A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3
Offset: 1
Comments
The first negative term is a(210) = -7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A317937aux(n) = if(1==n,n,(omega(n)-sumdiv(n,d,if((d>1)&&(d
A317937aux(d)*A317937aux(n/d),0)))/2); A317937(n) = numerator(A317937aux(n)); -
PARI
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u). DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
Andrew Howroyd, Aug 13 2018
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d 1.
A317846 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A051953 (cototient of n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 7, 1, 7, 1, 25, 11, 11, 1, 43, 1, 15, 13, 363, 1, 71, 1, 67, 17, 23, 1, 139, 19, 27, 61, 91, 1, 57, 1, 1335, 25, 35, 21, 365, 1, 39, 29, 215, 1, 81, 1, 139, 131, 47, 1, 1875, 27, 199, 37, 163, 1, 367, 29, 291, 41, 59, 1, 235, 1, 63, 171, 9923, 33, 129, 1, 211, 49, 137, 1, 1055, 1, 75, 235, 235, 33, 153, 1, 2883, 1363, 83, 1, 335, 41
Offset: 1
Comments
The first negative term is a(420) = -1269.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
A317846aux(n) = if(1==n,n,((n-eulerphi(n))-sumdiv(n,d,if((d>1)&&(d
A317846aux(d)*A317846aux(n/d),0)))/2); A317846(n) = numerator(A317846aux(n)); -
PARI
\\ Memoized implementation: memo317846 = Map(); A317846aux(n) = if(1==n,n,if(mapisdefined(memo317846,n),mapget(memo317846,n),my(v = ((n-eulerphi(n))-sumdiv(n,d,if((d>1)&&(d
A317846aux(d)*A317846aux(n/d),0)))/2); mapput(memo317846,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A051953(n) - Sum_{d|n, d>1, d 1.
A317938 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A001222 (bigomega n) + A063524 (1, 0, 0, 0, ...).
1, 1, 1, 7, 1, 3, 1, 17, 7, 3, 1, 11, 1, 3, 3, 139, 1, 11, 1, 11, 3, 3, 1, 15, 7, 3, 17, 11, 1, 3, 1, 263, 3, 3, 3, 17, 1, 3, 3, 15, 1, 3, 1, 11, 11, 3, 1, 83, 7, 11, 3, 11, 1, 15, 3, 15, 3, 3, 1, -3, 1, 3, 11, 995, 3, 3, 1, 11, 3, 3, 1, 11, 1, 3, 11, 11, 3, 3, 1, 83, 139, 3, 1, -3, 3, 3, 3, 15, 1, -3, 3, 11, 3, 3, 3, 189, 1, 11, 11, 17, 1, 3, 1, 15, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
PARI
A317938aux(n) = if(1==n,n,(bigomega(n)-sumdiv(n,d,if((d>1)&&(d
A317938aux(d)*A317938aux(n/d),0)))/2); A317938(n) = numerator(A317938aux(n)); -
PARI
\\ Memoized implementation: memo317938 = Map(); A317938aux(n) = if(1==n,n,if(mapisdefined(memo317938,n),mapget(memo317938,n),my(v = (bigomega(n)-sumdiv(n,d,if((d>1)&&(d
A317938aux(d)*A317938aux(n/d),0)))/2); mapput(memo317938,n,v); (v)));
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001222(n) - Sum_{d|n, d>1, d 1.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula