cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.

Original entry on oeis.org

1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1

Views

Author

Keywords

Comments

From Antti Karttunen, Aug 21 2018: (Start)
a(n) is the denominator of any rational-valued sequence f(n) which has been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d
Proof:
Proof is by induction. We assume as our induction hypothesis that the given multiplicative formula for A046644 (resp. additive formula for A046645) holds for all proper divisors d|n, dA046645(p) = 1. [Remark: for squares of primes, f(p^2) = (4*b(p^2) - 1)/8, thus a(p^2) = 8.]
First we note that A005187(x+y) <= A005187(x) + A005187(y), with equivalence attained only when A004198(x,y) = 0, that is, when x and y do not have any 1-bits in the shared positions. Let m = Sum_{e} A005187(e), with e ranging over the exponents in prime factorization of n.
For [case A] any n in A268388 it happens that only when d (and thus also n/d) are infinitary divisors of n will Sum_{e} A005187(e) [where e now ranges over the union of multisets of exponents in the prime factorizations of d and n/d] attain value m, which is the maximum possible for such sums computed for all divisor pairs d and n/d. For any n in A268388, A037445(n) = 2^k, k >= 2, thus A037445(n) - 2 = 2 mod 4 (excluding 1 and n from the count, thus -2). Thus, in the recursive formula above, the maximal denominator that occurs in the sum is 2^m which occurs k times, with k being an even number, but not a multiple of 4, thus the factor (1/2) in the front of the whole sum will ensure that the denominator of the whole expression is 2^m [which thus is equal to 2^A046645(n) = a(n)].
On the other hand [case B], for squares in A050376 (A082522, numbers of the form p^(2^k) with p prime and k>0), all the sums A005187(x)+A005187(y), where x+y = 2^k, 0 < x <= y < 2^k are less than A005187(2^k), thus it is the lonely "middle pair" f(p^(2^(k-1))) * f(p^(2^(k-1))) among all the pairs f(d)*f(n/d), 1 < d < n = p^(2^k) which yields the maximal denominator. Furthermore, as it occurs an odd number of times (only once), the common factor (1/2) for the whole sum will increase the exponent of 2 in denominator by one, which will be (2*A005187(2^(k-1))) + 1 = A005187(2^k) = A046645(p^(2^k)).
(End)
From Antti Karttunen, Aug 21 2018: (Start)
The following list gives a few such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n). Here ε stands for sequence A063524 (1, 0, 0, ...).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
(End)
This sequence gives an upper bound for the denominators of any rational-valued sequence obtained as the "Dirichlet Square Root" of any integer-valued sequence. - Andrew Howroyd, Aug 23 2018

Crossrefs

See A046643 for more details. See also A046645, A317940.
Cf. A299150, A299152, A317832, A317926, A317932, A317934 (for denominator sequences of other similar constructions).

Programs

Formula

From Antti Karttunen, Jul 08 2017: (Start)
Multiplicative with a(p^n) = 2^A005187(n).
a(1) = 1; for n > 1, a(n) = A000079(A005187(A067029(n))) * a(A028234(n)).
a(n) = A000079(A046645(n)).
(End)
Sum_{j=1..n} A046643(j)/A046644(j) ~ n / sqrt(Pi*log(n)) * (1 + (1 - gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 04 2025

A318511 Numerators of the sequence whose Dirichlet convolution with itself yields A064549, n * Product_{primes p|n} p.

Original entry on oeis.org

1, 2, 9, 2, 25, 9, 49, 4, 27, 25, 121, 9, 169, 49, 225, 6, 289, 27, 361, 25, 441, 121, 529, 18, -125, 169, 405, 49, 841, 225, 961, 12, 1089, 289, 1225, 27, 1369, 361, 1521, 50, 1681, 441, 1849, 121, 675, 529, 2209, 27, -1029, -125, 2601, 169, 2809, 405, 3025, 98, 3249, 841, 3481, 225, 3721, 961, 1323, 20, 4225, 1089, 4489, 289, 4761, 1225, 5041, 27
Offset: 1

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

No zeros among the first 2^20 terms.
For odd primes p, it seems that a(p) = p^2.

Crossrefs

Cf. A064549, A318512 (denominators).
Cf. also A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (n*Times @@ FactorInteger[n][[All, 1]] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 65537;
    A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); };
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA064549(n)));
    A318511(n) = numerator(v318511_12[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064549(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} A318511(k) / A318512(k) ~ n^3 * sqrt(Pi*f(3)/(54*log(n))) * (1 + (1/3 - gamma/2 - f'(3)/(2*f(3)) - 3*zeta'(2)/Pi^2) / (2*log(n))), where
f(3) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144...
f'(3)/f(3) = Sum_{p prime} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)

A318653 Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 3, 5, 11, 3, 13, 7, 15, 3, 17, 3, 19, 5, 21, 11, 23, 3, -5, 13, 15, 7, 29, 15, 31, 3, 33, 17, 35, 3, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 9, -21, -5, 51, 13, 53, 15, 55, 7, 57, 29, 59, 15, 61, 31, 21, 5, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, -15, 19, 77, 39, 79, 15, 3, 41, 83, 21, 85, 43, 87, 11, 89, 15
Offset: 1

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

No zeros among the first 2^20 terms.

Crossrefs

Cf. A007947, A299150 (denominators).

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    up_to = 65537;
    A007947(n) = factorback(factorint(n)[, 1]);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA007947(n)));
    A318653(n) = numerator(v318653_aux[n]);
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + p*X - X)/(1 - X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A007947(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 08 2025: (Start)
Let f(s) = Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s-2) - 1/p^s).
Sum_{k=1..n} A318653(k)/A299150(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - (gamma - 1 + f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319...
f'(2) = f(2) * Sum_{p prime} (3*p-2)*log(p) / ((p-1)*(p^2+p-1)) = f(2) * 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)

A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 3, 5, 1, 1, 5, 3, 6, 3, 2, 35, 8, 1, 9, 3, 3, 5, 11, 5, 0, 3, 1, 9, 14, 1, 15, 63, 5, 4, 6, 3, 18, 9, 6, 5, 20, 3, 21, 15, 1, 11, 23, 35, -3, 0, 8, 9, 26, 1, 10, 15, 9, 7, 29, 3, 30, 15, 3, 231, 12, 5, 33, 3, 11, 3, 35, 5, 36, 9, 0, 27, 15, 3, 39, 35, 3, 10, 41, 9, 16, 21, 14, 25, 44, 1, 18, 33, 15, 23, 18, 63, 48, -3, 5, 0, 50, 4, 51, 15, 6
Offset: 1

Author

Antti Karttunen, Aug 24 2018

Keywords

Crossrefs

Cf. A173557, A318318 (denominators).
Cf. also A317925, A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318317(n) = numerator(v318317_18[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)

A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.

Original entry on oeis.org

1, 1, 1, 15, 1, 1, 1, 49, 35, 1, 1, 15, 1, 1, 1, 603, 1, 35, 1, 15, 1, 1, 1, 49, 99, 1, 181, 15, 1, 1, 1, 2023, 1, 1, 1, 525, 1, 1, 1, 49, 1, 1, 1, 15, 35, 1, 1, 603, 195, 99, 1, 15, 1, 181, 1, 49, 1, 1, 1, 15, 1, 1, 35, 14875, 1, 1, 1, 15, 1, 1, 1, 1715, 1, 1, 99, 15, 1, 1, 1, 603, 3235, 1, 1, 15, 1, 1, 1, 49, 1, 35, 1, 15, 1, 1, 1, 2023, 1
Offset: 1

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

Multiplicative because A046644 and A057521 are.

Crossrefs

Cf. A057521, A046644 (denominators).
Cf. also A317935, A318511, A318649.

Programs

  • Mathematica
    ff[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; f[1] = 1; f[n_] := f[n] = 1/2 (a[n] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 11 2025 *)
  • PARI
    up_to = 65537;
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA057521(n)));
    A318650(n) = numerator(v318650_aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057521(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025, simplified May 11 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
Sum_{k=1..n} A318650(k) / A046644(k) ~ n^(3/2) * sqrt(2*f(3/2)/(9*Pi*log(n))) * (1 + (2/3 - gamma - f'(3/2)/(2*f(3/2))) / (2*log(n))), where
f(3/2) = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = A328013 = 3.51955505841710664719752940369857817...
f'(3/2)/f(3/2) = Sum_{p prime} (4*p - 3) * log(p) / (1 - 2*p - p^(5/2)) = -3.90914718020692131140714384422938370058563543737256496...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-5 of 5 results.