A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A318511 Numerators of the sequence whose Dirichlet convolution with itself yields A064549, n * Product_{primes p|n} p.
1, 2, 9, 2, 25, 9, 49, 4, 27, 25, 121, 9, 169, 49, 225, 6, 289, 27, 361, 25, 441, 121, 529, 18, -125, 169, 405, 49, 841, 225, 961, 12, 1089, 289, 1225, 27, 1369, 361, 1521, 50, 1681, 441, 1849, 121, 675, 529, 2209, 27, -1029, -125, 2601, 169, 2809, 405, 3025, 98, 3249, 841, 3481, 225, 3721, 961, 1323, 20, 4225, 1089, 4489, 289, 4761, 1225, 5041, 27
Offset: 1
Comments
No zeros among the first 2^20 terms.
For odd primes p, it seems that a(p) = p^2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = 1/2 (n*Times @@ FactorInteger[n][[All, 1]] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
-
PARI
up_to = 65537; A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); }; DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A064549(n))); A318511(n) = numerator(v318511_12[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064549(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} A318511(k) / A318512(k) ~ n^3 * sqrt(Pi*f(3)/(54*log(n))) * (1 + (1/3 - gamma/2 - f'(3)/(2*f(3)) - 3*zeta'(2)/Pi^2) / (2*log(n))), where
f(3) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298513355936144...
f'(3)/f(3) = Sum_{p prime} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)
A318653 Numerators of the sequence whose Dirichlet convolution with itself yields A007947, the squarefree kernel of n.
1, 1, 3, 1, 5, 3, 7, 1, 3, 5, 11, 3, 13, 7, 15, 3, 17, 3, 19, 5, 21, 11, 23, 3, -5, 13, 15, 7, 29, 15, 31, 3, 33, 17, 35, 3, 37, 19, 39, 5, 41, 21, 43, 11, 15, 23, 47, 9, -21, -5, 51, 13, 53, 15, 55, 7, 57, 29, 59, 15, 61, 31, 21, 5, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, -15, 19, 77, 39, 79, 15, 3, 41, 83, 21, 85, 43, 87, 11, 89, 15
Offset: 1
Comments
No zeros among the first 2^20 terms.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Mathematica
rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
-
PARI
up_to = 65537; A007947(n) = factorback(factorint(n)[, 1]); DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A007947(n))); A318653(n) = numerator(v318653_aux[n]); for(n=1, 100, print1(numerator(direuler(p=2, n, ((1 + p*X - X)/(1 - X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A007947(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 08 2025: (Start)
Let f(s) = Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(2*s-2) - 1/p^s).
Sum_{k=1..n} A318653(k)/A299150(k) ~ n^2 * sqrt(Pi*f(2)/(24*log(n))) * (1 - (gamma - 1 + f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A065464 = Product_{p prime} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319...
f'(2) = f(2) * Sum_{p prime} (3*p-2)*log(p) / ((p-1)*(p^2+p-1)) = f(2) * 1.469536740824614833203393993450164364663334798759143895712...
and gamma is the Euler-Mascheroni constant A001620. (End)
A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.
1, 1, 1, 3, 2, 1, 3, 5, 1, 1, 5, 3, 6, 3, 2, 35, 8, 1, 9, 3, 3, 5, 11, 5, 0, 3, 1, 9, 14, 1, 15, 63, 5, 4, 6, 3, 18, 9, 6, 5, 20, 3, 21, 15, 1, 11, 23, 35, -3, 0, 8, 9, 26, 1, 10, 15, 9, 7, 29, 3, 30, 15, 3, 231, 12, 5, 33, 3, 11, 3, 35, 5, 36, 9, 0, 27, 15, 3, 39, 35, 3, 10, 41, 9, 16, 21, 14, 25, 44, 1, 18, 33, 15, 23, 18, 63, 48, -3, 5, 0, 50, 4, 51, 15, 6
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
-
PARI
up_to = 16384; A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318317_18 = DirSqrt(vector(up_to, n, A173557(n))); A318317(n) = numerator(v318317_18[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)
A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.
1, 1, 1, 15, 1, 1, 1, 49, 35, 1, 1, 15, 1, 1, 1, 603, 1, 35, 1, 15, 1, 1, 1, 49, 99, 1, 181, 15, 1, 1, 1, 2023, 1, 1, 1, 525, 1, 1, 1, 49, 1, 1, 1, 15, 35, 1, 1, 603, 195, 99, 1, 15, 1, 181, 1, 49, 1, 1, 1, 15, 1, 1, 35, 14875, 1, 1, 1, 15, 1, 1, 1, 1715, 1, 1, 99, 15, 1, 1, 1, 603, 3235, 1, 1, 15, 1, 1, 1, 49, 1, 35, 1, 15, 1, 1, 1, 2023, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (10^8 terms)
Programs
-
Mathematica
ff[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; f[1] = 1; f[n_] := f[n] = 1/2 (a[n] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 11 2025 *)
-
PARI
up_to = 65537; A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A057521(n))); A318650(n) = numerator(v318650_aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057521(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025, simplified May 11 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
Sum_{k=1..n} A318650(k) / A046644(k) ~ n^(3/2) * sqrt(2*f(3/2)/(9*Pi*log(n))) * (1 + (2/3 - gamma - f'(3/2)/(2*f(3/2))) / (2*log(n))), where
f(3/2) = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = A328013 = 3.51955505841710664719752940369857817...
f'(3/2)/f(3/2) = Sum_{p prime} (4*p - 3) * log(p) / (1 - 2*p - p^(5/2)) = -3.90914718020692131140714384422938370058563543737256496...
and gamma is the Euler-Mascheroni constant A001620. (End)
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula