cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318376 a(n) = F(n+1)^3 - 3*F(n-1)*F(n)^2, where F(n) = A000045(n), the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 5, 15, 71, 287, 1237, 5205, 22105, 93547, 396419, 1679019, 7112825, 30129785, 127632829, 540659703, 2290273903, 9701751655, 41097286445, 174090887853, 737460853361, 3123934276211, 13233197998795, 56056726205715, 237460102927921, 1005897137745457, 4261048654187957
Offset: 0

Views

Author

Liam Solus, Aug 24 2018

Keywords

Comments

a(n) is the number of Markov equivalence classes whose skeleton is a spider graph with three legs, each of which contains n nodes of degree at most two.
A001519 admits the related formula A001519(n) = F(n+1)^2 - 2*F(n-1)*F(n).

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)^3 - 3*Fibonacci(n-1)*Fibonacci(n)^2: n in [1..30]]; // Vincenzo Librandi, Sep 03 2018
  • Mathematica
    CoefficientList[Series[(1 - 2 x - 4 x^2 - 3 x^3) / ((1 + x - x^2) (1-4 x-x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Aug 25 2018 *)
    LinearRecurrence[{3, 6, -3, -1}, {1, 1, 5, 15, 71}, 26] (* Stefano Spezia, Sep 02 2018; a(0)=1 amended by Georg Fischer, Apr 03 2019 *)
    Table[Fibonacci[n + 1]^3 - 3 Fibonacci[n-1] Fibonacci[n]^2, {n, 0, 25}] (* Vincenzo Librandi, Sep 03 2018 *)
    #[[3]]^3-3#[[1]]#[[2]]^2&/@Partition[Fibonacci[Range[-1,30]],3,1] (* Harvey P. Dale, Sep 02 2023 *)
  • PARI
    a(n) = fibonacci(n+1)^3 - 3*fibonacci(n-1)*fibonacci(n)^2; \\ Michel Marcus, Aug 25 2018
    
  • PARI
    my(x='x+O('x^31));  Vec((1 - 2*x - 4*x^2 - 3*x^3) / ((1 + x - x^2)*(1 - 4*x - x^2))) \\ Colin Barker, Aug 25 2018 and Sep 06 2018
    

Formula

From Colin Barker, Aug 25 2018: (Start)
G.f.: (1 - 2 x - 4 x^2 - 3 x^3) / ((1 + x - x^2)*(1 - 4*x - x^2)).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4) for n>3.
(End)

Extensions

a(0) = 1 inserted by Vincenzo Librandi, Sep 03 2018