A329559
MM-numbers of multiset clutters (connected weak antichains of multisets).
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227
Offset: 1
The sequence of terms tother with their corresponding clutters begins:
1: {} 37: {{1,1,2}} 91: {{1,1},{1,2}}
2: {{}} 41: {{6}} 97: {{3,3}}
3: {{1}} 43: {{1,4}} 101: {{1,6}}
5: {{2}} 47: {{2,3}} 103: {{2,2,2}}
7: {{1,1}} 49: {{1,1},{1,1}} 107: {{1,1,4}}
9: {{1},{1}} 53: {{1,1,1,1}} 109: {{10}}
11: {{3}} 59: {{7}} 113: {{1,2,3}}
13: {{1,2}} 61: {{1,2,2}} 121: {{3},{3}}
17: {{4}} 67: {{8}} 125: {{2},{2},{2}}
19: {{1,1,1}} 71: {{1,1,3}} 127: {{11}}
23: {{2,2}} 73: {{2,4}} 131: {{1,1,1,1,1}}
25: {{2},{2}} 79: {{1,5}} 137: {{2,5}}
27: {{1},{1},{1}} 81: {{1},{1},{1},{1}} 139: {{1,7}}
29: {{1,3}} 83: {{9}} 149: {{3,4}}
31: {{5}} 89: {{1,1,1,2}} 151: {{1,1,2,2}}
Cf.
A056239,
A112798,
A289509,
A302242,
A302494,
A304716,
A318991,
A319837,
A320275,
A320456,
A328514,
A329553,
A329555.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]
A329555
Smallest MM-number of a clutter (connected antichain) of n distinct sets.
Original entry on oeis.org
1, 2, 377, 16211, 761917
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
Spanning cutters of distinct sets are counted by
A048143.
MM-numbers of connected weak-antichains are
A329559.
MM-numbers of sets of sets are
A302494.
The smallest BII-number of a clutter with n edges is
A329627.
Not requiring the edges to form an antichain gives
A329552.
Cf.
A056239,
A112798,
A302242,
A319837,
A320275,
A322113,
A327076,
A328514,
A329552,
A329558,
A329560,
A329561.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
A320275
Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 7, 9, 13, 19, 27, 37, 49, 53, 61, 81, 89, 91, 113, 131, 151, 169, 223, 243, 247, 251, 281, 299, 311, 343, 359, 361, 377, 427, 463, 503, 593, 611, 637, 659, 689, 703, 719, 729, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1183, 1291, 1321, 1339
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
2: {{}}
3: {{1}}
7: {{1,1}}
9: {{1},{1}}
13: {{1,2}}
19: {{1,1,1}}
27: {{1},{1},{1}}
37: {{1,1,2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
61: {{1,2,2}}
81: {{1},{1},{1},{1}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
169: {{1,2},{1,2}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285572,
A286520,
A290103,
A293994,
A302242,
A316476,
A319496,
A319837,
A320456,
A320532.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
A329626
Smallest BII-number of an antichain with n edges.
Original entry on oeis.org
0, 1, 3, 11, 139, 820, 2868, 35636, 199476, 723764
Offset: 0
The sequence of terms together with their corresponding set-systems begins:
0: {}
1: {{1}}
3: {{1},{2}}
11: {{1},{2},{3}}
139: {{1},{2},{3},{4}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
35636: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{5}}
199476: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5}}
723764: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5},{3,5}}
BII-numbers of antichains are
A326704.
Cf.
A048143,
A048793,
A070939,
A303362,
A319837,
A326031,
A326750,
A329555,
A329560,
A329561,
A329625.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_]:=!Apply[Or,Outer[#1=!=#2&&SubsetQ[#1,#2]&,u,u,1],{0,1}];
First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#]]&],Length[bpe[#]]&]
A319496
Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 151, 223, 247, 251, 281, 299, 311, 359, 377, 427, 463, 503, 593, 611, 659, 689, 703, 719, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1291, 1321, 1339, 1363, 1511, 1619, 1703, 1733, 1739, 1757, 1769
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
2: {{}}
3: {{1}}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285573,
A286520,
A293994,
A302242,
A318401,
A319719,
A319837,
A320275,
A320456,
A320532.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
A318401
Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices span an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 7, 13, 15, 19, 35, 37, 53, 61, 69, 89, 91, 95, 113, 131, 141, 143, 145, 151, 161, 165, 223, 247, 251, 265, 281, 299, 309, 311, 329, 355, 359, 377, 385, 407, 427, 437, 463, 503, 591, 593, 611, 655, 659, 667, 671, 689, 703, 719, 721, 759, 791, 827, 851
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
1: {}
2: {{}}
3: {{1}}
7: {{1,1}}
13: {{1,2}}
15: {{1},{2}}
19: {{1,1,1}}
35: {{2},{1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
69: {{1},{2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
95: {{2},{1,1,1}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285572,
A290103,
A293993,
A302242,
A304713,
A316476,
A319496,
A319721,
A319837,
A320275,
A320456.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible]]&]
Showing 1-6 of 6 results.
Comments