A321014 Number of divisors of n which are greater than 3.
0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 7, 2, 4, 2, 4, 1, 5, 3, 6, 2, 2, 1, 9, 1, 2, 4, 5, 3, 5, 1, 4, 2, 6, 1, 9, 1, 2, 4, 4, 3, 5, 1, 8, 3, 2, 1, 9, 3, 2, 2, 6, 1, 9, 3, 4, 2, 2
Offset: 1
References
- Marjorie Senechal, "Introduction to lattice geometry." In M. Waldschmidt et al., eds., From Number Theory to Physics, pp. 476-495. Springer, Berlin, Heidelberg, 1992. See Cor. 3.7.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
d2:=proc(n) local c; if n <= 3 then return(0); fi; c:=NumberTheory[tau](n)-1; if (n mod 2)=0 then c:=c-1; fi; if (n mod 3)=0 then c:=c-1; fi; c; end; [seq(d2(n),n=1..120)];
-
Mathematica
nmax = 94; Rest[CoefficientList[Series[Sum[x^k/(1 - x^k), {k, 4, nmax}], {x, 0, nmax}], x]] (* Ilya Gutkovskiy, Nov 07 2018 *)
-
PARI
a(n) = sumdiv(n, d, d>3); \\ Michel Marcus, Nov 06 2018
-
PARI
a(n) = numdiv(n) - 3 + !!(n%2) + !!(n%3) \\ David A. Corneth, Nov 07 2018
-
PARI
my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023
Formula
G.f.: Sum_{k>=4} x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{d|n, d>3} 1. - Wesley Ivan Hurt, Apr 28 2020
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 17/6), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024