cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A023645 a(n) = tau(n)-1 if n is odd or tau(n)-2 if n is even.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, 4, 3, 2, 1, 6, 2, 2, 3, 4, 1, 6, 1, 4, 3, 2, 3, 7, 1, 2, 3, 6, 1, 6, 1, 4, 5, 2, 1, 8, 2, 4, 3, 4, 1, 6, 3, 6, 3, 2, 1, 10, 1, 2, 5, 5, 3, 6, 1, 4, 3, 6, 1, 10, 1, 2, 5, 4, 3, 6, 1, 8, 4, 2, 1, 10, 3, 2, 3, 6, 1, 10, 3, 4, 3, 2, 3, 10, 1, 4, 5, 7, 1, 6, 1, 6
Offset: 1

Views

Author

Keywords

Comments

Vertex-transitive graphs of valency 2 with n nodes.
Number of values of k such that n+2 divided by k leaves a remainder 2. - Amarnath Murthy, Aug 01 2002
Number of divisors of n that are less than n/2. - Peter Munn, Mar 31 2017, or equivalently, number of divisors of n that are greater than 2. - Antti Karttunen, Feb 20 2023
For n > 2, a(n) is the number of planar arrangements of equal-sized regular n-gons such that their centers lie on a circle and neighboring n-gons have an edge in common. - Peter Munn, Apr 23 2017
Number of partitions of n into two distinct parts such that the smaller divides the larger. - Wesley Ivan Hurt, Dec 21 2017

Examples

			x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + 4*x^12 + ...
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 649.

Crossrefs

Programs

  • Maple
    with(numtheory); f := n->if n mod 2 = 1 then tau(n)-1 else tau(n)-2; fi;
  • Mathematica
    Table[s = DivisorSigma[0, n]; If[OddQ[n], s - 1, s - 2], {n, 100}] (* T. D. Noe, Nov 18 2013 *)
    Array[DivisorSigma[0, #] - 1 - Boole@ EvenQ@ # &, 104] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    {a(n) = if( n<1, 0, numdiv(n) - 2 + n%2)} /* Michael Somos, Apr 29 2003 */
    
  • PARI
    a(n) = sumdiv(n, d, d < n/2); \\ Michel Marcus, Apr 01 2017

Formula

G.f.: Sum_{k>0} x^(3*k) / (1 - x^k). - Michael Somos, Apr 29 2003.
a(2*n) = A069930(n). a(2*n + 1) = A095374(n). - Michael Somos, Aug 30 2012
a(n) = A072528(n+2,2) for n > 2. - Peter Munn, May 14 2017
From Peter Bala, Jan 13 2021: (Start)
a(n) = Sum_{ d|n, d < n/2 } 1. Cf. A296955.
G.f.: Sum_{k >= 3} x^k/(1 - x^k). (End)
a(n) = A049992(n) - A014405(n). - Antti Karttunen, Feb 20 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 5/2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

More terms from Vladeta Jovovic, Dec 03 2001

A135539 Triangle read by rows: T(n,k) = number of divisors of n that are >= k.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 30 2007

Keywords

Comments

Row sums give A000203.
Left border is A000005.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 2, 1, 1;
  2, 1, 1, 1, 1;
  4, 3, 2, 1, 1, 1;
  2, 1, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 1, 1, 1, 1;
  3, 2, 2, 1, 1, 1, 1, 1, 1;
  4, 3, 2, 2, 2, 1, 1, 1, 1, 1;
  2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    f1:=proc(n) local d,s1,t1,t2,i;
    d:=tau(n);
    s1:=sort(divisors(n));
    t1:=Array(1..n,0);
    for i from 1 to d do t1[n-s1[i]+1]:=1; od:
    t2:=PSUM(convert(t1,list));
    [seq(t2[n+1-i],i=1..n)];
    end proc;
    for n from 1 to 15 do lprint(f1(n)); od: # N. J. A. Sloane, Nov 09 2018
  • Mathematica
    T[n_, k_] := DivisorSum[n, Boole[# >= k]&];
    Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 15 2023 *)
  • PARI
    row(n) = my(d=divisors(n)); vector(n, k, #select(x->(x>=k), d)); \\ Michel Marcus, Jul 23 2022

Formula

Triangle read by rows, partial sums of A051731 starting from the right. A051731 as a lower triangular matrix times an all 1's lower triangular matrix.
From Seiichi Manyama, Jan 07 2023: (Start)
G.f. of column k: Sum_{j>=1} x^(k*j)/(1 - x^j).
G.f. of column k: Sum_{j>=k} x^j/(1 - x^j). (End)
Sum_{j=1..n} T(j, k) ~ n * (log(n) + 2*gamma - 1 - H(k-1)), where gamma is Euler's constant (A001620), and H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 08 2024

Extensions

Clearer definition from N. J. A. Sloane, Nov 09 2018

A049986 a(n) is the number of arithmetic progressions of 4 or more positive integers, strictly increasing with sum n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 2, 0, 1, 2, 2, 1, 3, 0, 4, 0, 2, 1, 3, 4, 4, 0, 3, 1, 6, 0, 5, 0, 4, 6, 4, 0, 4, 2, 8, 2, 5, 0, 6, 6, 6, 2, 5, 0, 11, 0, 5, 5, 6, 7, 8, 0, 6, 2, 15, 0, 9, 0, 6, 10, 7, 4, 9, 0, 14, 5, 7, 0, 12, 9, 7, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k >= 4} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 4} x^t(k)/((1 - x^k)*(1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [Graeme McRae]. - Petros Hadjicostas, Sep 29 2019
a(n) = A049994(n) - A321014(n). [Listed by Sequence Machine and obviously true] - Antti Karttunen, Feb 20 2023

A338648 Number of divisors of n which are greater than 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 3, 2, 2, 3, 5, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 4, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 3, 5, 1, 3, 2, 6, 1, 8, 1, 2, 4, 3, 3, 5, 1, 7, 3, 2, 1, 8, 3, 2, 2, 5, 1, 9, 3, 3, 2, 2, 3, 8, 1, 4, 4, 6, 1, 5, 1, 5, 6, 2, 1, 8, 1, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 4 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(5 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 5, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>4); \\ Michel Marcus, Apr 22 2021; corrected Jun 13 2022
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=5, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(5*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=5} (1 - x^k)^(1/k) ).
a(n) = A000005(n) - A083040(n).
G.f.: Sum_{k>=5} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 37/12), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(4) prepended by David A. Corneth, Jun 13 2022

A338649 Number of divisors of n which are greater than 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 4, 4, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 3, 5, 1, 6, 3, 2, 1, 8, 2, 2, 2, 5, 1, 8, 3, 3, 2, 2, 2, 8, 1, 4, 4, 5, 1, 5, 1, 5, 5, 2, 1, 8, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 5 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(6 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 6, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>5); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=6, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(6*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=6} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=6} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 197/60), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(5) prepended by David A. Corneth, Jun 13 2022

A338650 Number of divisors of n which are greater than 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 5, 1, 7, 1, 2, 3, 3, 3, 4, 1, 6, 3, 2, 1, 7, 2, 2, 2, 5, 1, 7, 3, 3, 2, 2, 2, 7, 1, 4, 4, 5, 1, 4, 1, 5, 5, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 6 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(7 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 7, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>6); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=7, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(7*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=7} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=7} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 69/20), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(6) prepended by David A. Corneth, Jun 13 2022

A338651 Number of divisors of n which are greater than 7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 6, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 4, 5, 1, 4, 1, 5, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 7 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(8 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 8, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>7); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0], Vec(sum(k=8, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(8*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=8} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=8} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 503/140), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(7) prepended by David A. Corneth, Jun 13 2022

A338652 Number of divisors of n which are greater than 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 6, 1, 2, 3, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 7, 2, 3, 2, 2, 2, 6, 1, 3, 4, 5, 1, 4, 1, 4, 4, 2, 1, 7, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 8 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(9 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 9, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>8); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=9, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(9*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=9} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=9} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 1041/280), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(8) prepended by David A. Corneth, Jun 13 2022

A338653 Number of divisors of n which are greater than 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 3, 2, 4, 1, 3, 2, 4, 1, 5, 1, 2, 3, 3, 2, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 4, 1, 4, 4, 2, 1, 6, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 9 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(10 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 10, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
    Table[Count[Divisors[n],?(#>9&)],{n,120}] (* _Harvey P. Dale, Jan 09 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d>9); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=10, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(10*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=10} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=10} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 9649/2520), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(9) prepended by David A. Corneth, Jun 13 2022

A049994 a(n) is the number of arithmetic progressions of 4 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 3, 4, 1, 4, 1, 6, 3, 4, 1, 6, 4, 4, 3, 7, 1, 9, 1, 6, 3, 5, 7, 10, 1, 5, 3, 12, 1, 10, 1, 8, 10, 6, 1, 11, 4, 12, 4, 9, 1, 11, 9, 12, 4, 7, 1, 20, 1, 7, 9, 11, 10, 13, 1, 10, 4, 21, 1, 18, 1, 8, 14, 11, 7, 14, 1, 22, 8, 9, 1, 21, 12, 9, 5, 15, 1, 29, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k >= 4} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A175676(n) = A049986(n) + A321014(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023

Extensions

More terms from Petros Hadjicostas, Sep 29 2019
Showing 1-10 of 13 results. Next