cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322242 G.f.: 1/sqrt(1 - 6*x - 7*x^2).

Original entry on oeis.org

1, 3, 17, 99, 609, 3843, 24689, 160611, 1054657, 6975747, 46406097, 310171491, 2081258529, 14011445763, 94594402353, 640188979299, 4341874207617, 29502747778563, 200803974858641, 1368767759442531, 9342637825548769, 63846282803069187, 436797192815981553, 2991302112253485411, 20504081077963103041, 140665546932766467843, 965770879590646638929, 6635507385062085656931, 45621050527781298148257
Offset: 0

Views

Author

Paul D. Hanna, Dec 08 2018

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 17*x^2 + 99*x^3 + 609*x^4 + 3843*x^5 + 24689*x^6 + 160611*x^7 + 1054657*x^8 + 6975747*x^9 + 46406097*x^10 + ...
such that A(x)^2 = 1/(1 - 6*x - 7*x^2).
RELATED SERIES.
Ignoring the initial term, this sequence yields the logarithmic derivative of
exp( Sum_{n>=1} a(n)*x^n/n ) = 1 + 3*x + 13*x^2 + 63*x^3 + 329*x^4 + 1803*x^5 + 10229*x^6 + 59559*x^7 + 353873*x^8 + 2136915*x^9 + 13076637*x^10 + ...
which equals (1-3*x - sqrt(1 - 6*x - 7*x^2))/(8*x^2).
		

Crossrefs

Cf. A322243.

Programs

  • Maple
    f:= gfun:-rectoproc({(7*n+7)*a(n)+(9+6*n)*a(n+1)+(-n-2)*a(n+2), a(0) = 1, a(1) = 3}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Dec 10 2018
  • Mathematica
    CoefficientList[Series[1/Sqrt[1-6x-7x^2],{x,0,40}],x] (* Harvey P. Dale, Apr 14 2019 *)
  • PARI
    /* Using generating function: */
    {a(n) = polcoeff( 1/sqrt(1 - 6*x - 7*x^2 +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, (-1)^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Using binomial formula: */
    {a(n) = sum(k=0,n, 7^(n-k)*(-2)^k*binomial(n,k)*binomial(2*k,k))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* a(n) is central coefficient in (1 + 3*x + 4*x^2)^n */
    {a(n) = polcoeff( (1 + 3*x + 4*x^2 +x*O(x^n))^n, n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * 2^k * binomial(n,k)*binomial(2*k,k).
a(n) = Sum_{k=0..n} 7^(n-k) * (-2)^k * binomial(n,k)*binomial(2*k,k).
a(n) equals the (central) coefficient of x^n in (1 + 3*x + 4*x^2)^n.
exp( Sum_{n>=1} a(n)*x^n/n ) = (1-3*x - sqrt(1 - 6*x - 7*x^2))/(8*x^2).
D-finite with recurrence: (7*n+7)*a(n) + (9+6*n)*a(n+1) + (-n-2)*a(n+2) = 0. - Robert Israel, Dec 10 2018
a(n)^2 = A322243(n), which gives the coefficients in 1 / AGM(1+7*x, sqrt((1-x)*(1-7^2*x))). - Paul D. Hanna, Apr 20 2019
a(n) ~ 7^(n + 1/2) / (2^(3/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 27 2019
E.g.f.: exp(3*x) * BesselI(0,4*x). - Ilya Gutkovskiy, Feb 02 2021
a(n) = 7^n*2F1([1/2, -n], [1], 8/7), where 2F1 is the hypergeometric function. - Stefano Spezia, Feb 02 2021
a(n) = (1/4)^n * Sum_{k=0..n} (-1)^k * 7^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025