cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A304716 Number of integer partitions of n whose distinct parts are connected.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 3, 15, 4, 18, 12, 25, 11, 41, 17, 54, 36, 72, 44, 113, 69, 145, 113, 204, 153, 302, 220, 394, 343, 541, 475, 771, 662, 1023, 968, 1398, 1314, 1929, 1822, 2566, 2565, 3440, 3446, 4677, 4688, 6187, 6407, 8216, 8544, 10975, 11436
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following.
                     (12): {{1,1,2}}
                    (6 6): {{1,2},{1,2}}
                    (8 4): {{1,1,1},{1,1}}
                    (9 3): {{2,2},{2}}
                   (10 2): {{1,3},{1}}
                  (4 4 4): {{1,1},{1,1},{1,1}}
                  (6 3 3): {{1,2},{2},{2}}
                  (6 4 2): {{1,2},{1,1},{1}}
                  (8 2 2): {{1,1,1},{1},{1}}
                (3 3 3 3): {{2},{2},{2},{2}}
                (4 4 2 2): {{1,1},{1,1},{1},{1}}
                (6 2 2 2): {{1,2},{1},{1},{1}}
              (4 2 2 2 2): {{1,1},{1},{1},{1},{1}}
            (2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}}
(1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[Union[#]]]===1&]],{n,30}]

Formula

For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018

Extensions

Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018

A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3, 17, 11, 24, 10, 40, 16, 53, 35, 71, 43, 112, 68, 144, 112, 203, 152, 301, 219, 393, 342, 540, 474, 770, 661, 1022, 967, 1397, 1313, 1928, 1821, 2565, 2564, 3439, 3445, 4676, 4687, 6186, 6406, 8215, 8543, 10974, 11435
Offset: 0

Views

Author

Liam Naughton, Nov 26 2012

Keywords

Comments

a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected.

Examples

			From _Gus Wiseman_, Dec 03 2018: (Start)
The a(12) = 14 connected integer partitions of 12:
  (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)
        (8,4)   (6,3,3)  (4,4,2,2)
        (9,3)   (6,4,2)  (6,2,2,2)
        (10,2)  (8,2,2)
(End)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]==1&]],{n,10}]

Formula

For n > 1, a(n) = A304716(n) - 1. - Gus Wiseman, Dec 03 2018

Extensions

More terms from Gus Wiseman, Dec 03 2018

A322307 Number of multisets in the swell of the n-th multiset multisystem.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2018

Keywords

Comments

First differs from A001221 at a(91) = 3, A001221(91) = 2.
The swell of a multiset partition is the set of possible joins of its connected submultisets, where the multiplicity of a vertex in the join of a set of multisets is the maximum multiplicity of the same vertex among the parts. For example the swell of {{1,1},{1,2},{2,2}} is:
{1,1}
{1,2}
{2,2}
{1,1,2}
{1,2,2}
{1,1,2,2}

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zwell[y_]:=Union[y,Join@@Cases[Subsets[Union[y],{2}],{x_,z_}?(GCD@@#>1&):>zwell[Sort[Append[Fold[DeleteCases[#1,#2,{1},1]&,y,{x,z}],LCM[x,z]]]]]];
    Table[Length[zwell[primeMS[n]]],{n,100}]

A322367 Number of disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 2 through a(9) = 27 disconnected integer partitions:
  (21)   (31)    (32)     (51)      (43)       (53)        (54)
  (111)  (211)   (41)     (321)     (52)       (71)        (72)
         (1111)  (221)    (411)     (61)       (332)       (81)
                 (311)    (2211)    (322)      (431)       (432)
                 (2111)   (3111)    (331)      (521)       (441)
                 (11111)  (21111)   (421)      (611)       (522)
                          (111111)  (511)      (3221)      (531)
                                    (2221)     (3311)      (621)
                                    (3211)     (4211)      (711)
                                    (4111)     (5111)      (3222)
                                    (22111)    (22211)     (3321)
                                    (31111)    (32111)     (4221)
                                    (211111)   (41111)     (4311)
                                    (1111111)  (221111)    (5211)
                                               (311111)    (6111)
                                               (2111111)   (22221)
                                               (11111111)  (32211)
                                                           (33111)
                                                           (42111)
                                                           (51111)
                                                           (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]

A322368 Heinz numbers of disconnected integer partitions.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

Differs from A289509 in having 1 and lacking 2, 195, 455, 555, 585...
Also positions of entries > 1 in A305079.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The sequence of all disconnected integer partitions begins: (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[200],Length[csm[primeMS/@primeMS[#]]]>1&]

A322369 Number of strict disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 16, 17, 22, 26, 33, 36, 48, 52, 64, 76, 90, 101, 125, 142, 166, 192, 225, 250, 302, 339, 393, 451, 515, 581, 675, 762, 866, 985, 1122, 1255, 1441, 1612, 1823, 2059, 2318, 2591, 2930, 3275, 3668, 4118, 4605, 5125, 5749
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
  (2,1)  (3,1)  (3,2)  (5,1)    (4,3)    (5,3)    (5,4)    (7,3)      (6,5)
                (4,1)  (3,2,1)  (5,2)    (7,1)    (7,2)    (9,1)      (7,4)
                                (6,1)    (4,3,1)  (8,1)    (5,3,2)    (8,3)
                                (4,2,1)  (5,2,1)  (4,3,2)  (5,4,1)    (9,2)
                                                  (5,3,1)  (6,3,1)    (10,1)
                                                  (6,2,1)  (7,2,1)    (5,4,2)
                                                           (4,3,2,1)  (6,4,1)
                                                                      (7,3,1)
                                                                      (8,2,1)
                                                                      (5,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]
Showing 1-6 of 6 results.