cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A340364 a(n) = gcd(A005940(n), A324106(n)), where A324106(n) is multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 3, 16, 11, 14, 21, 20, 1, 30, 45, 24, 49, 50, 75, 36, 125, 6, 81, 32, 1, 22, 3, 28, 55, 42, 3, 40, 77, 2, 105, 60, 35, 90, 135, 48, 121, 98, 3, 100, 245, 150, 75, 72, 7, 250, 375, 12, 625, 162, 9, 64, 1, 2, 39, 44, 5, 6, 99, 56, 91, 110, 3, 84, 5, 6, 189, 80, 143, 154, 231
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2021

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A005940(n), A324106(n)) = gcd(A005940(n), A340362(n)).

A340365 a(n) = A005940(n) / gcd(A005940(n), A324106(n)), where A324106(n) is multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 35, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 13, 1, 11, 1, 1, 1, 21, 1, 1, 35, 1, 1, 5, 1, 1, 1, 1, 1, 49, 1, 1, 1, 3, 1, 49, 1, 1, 9, 1, 1, 27, 1, 17, 13, 1, 1, 13, 11, 1, 1, 1, 1, 55, 1, 55, 21, 1, 1, 1, 1, 1, 35, 7, 1, 21, 1, 1, 5, 7, 1, 875, 1, 27, 1, 1, 1, 121
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2021

Keywords

Comments

It is conjectured that A070776 gives the positions of all ones after the initial one. If that holds, then for all i, j: a(i) = a(j) => A340363(i) = A340363(j).

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); };
    A340365(n) = { my(t=A005940(n)); t / gcd(t, A324106(n)); };

Formula

a(n) = A005940(n) / A340364(n) = A005940(n) / gcd(A005940(n), A324106(n)).

A340366 a(n) = A324106(n) / gcd(A005940(n), A324106(n)), where A324106(n) is multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 45, 1, 15, 1, 1, 1, 25, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 9, 1, 1, 5, 1, 1, 7, 1, 125, 45, 1, 1, 27, 15, 1, 1, 1, 1, 49, 1, 27, 25, 1, 1, 1, 1, 1, 27, 1, 1, 25, 1, 1, 1, 3, 1, 243, 1, 7, 1, 1, 1, 35, 1, 1, 11
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2021

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); };
    A340366(n) = { my(u=A324106(n)); (u / gcd(u, A005940(n))); };

Formula

a(n) = A324106(n) / A340364(n) = A324106(n) / gcd(A005940(n), A324106(n)).

A340362 a(n) = A005940(n) - A324106(n), where A324106(n) is multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, -32, 0, -12, 0, 0, 0, -12, 0, 0, 16, 0, 0, 140, 0, 0, 0, 0, 0, 114, 0, 0, 0, 150, 0, 280, 0, 0, 48, 0, 0, 180, 0, -108, -64, 0, 0, -70, -24, 0, 0, 0, 0, 18, 0, 140, -24, 0, 0, 0, 0, 0, 32, 330, 0, -60, 0, 0, 280, 300, 0, 632, 0, 300
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2021

Keywords

Comments

It is conjectured that A070776 gives the positions of all zeros after the initial a(1) = 0. If that holds, then for all i, j: a(i) = a(j) => A340363(i) = A340363(j).

Crossrefs

Programs

A324107 Fixed points of A324106, where A324106 is a multiplicative function with A324106(p^e) = A005940(p^e).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 63, 64, 80, 96, 120, 126, 128, 160, 192, 240, 252, 256, 315, 320, 384, 480, 504, 512, 630, 640, 768, 960, 1008, 1024, 1260, 1280, 1536, 1920, 2016, 2048, 2520, 2560, 3072, 3840, 4032, 4096, 5040, 5120, 6144, 7680, 8064, 8192, 10080, 10240, 12288, 15360, 16128, 16384
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Numbers n such that A324106(n) = n.

Examples

			For n = 63 = 3^2 * 7^1, we find that A005940(9) = 7 and A005940(7) = 9, thus A324106(63) = 7*9 = 63, and 63 is a member of this sequence.
		

Crossrefs

Cf. A029747 (a subsequence).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); };
    isA324107(n) = (n==A324106(n));
    for(n=1,16384,if(isA324107(n), print1(n,", ")))

A005940 The Doudna sequence: write n-1 in binary; power of prime(k) in a(n) is # of 1's that are followed by k-1 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 27, 16, 11, 14, 21, 20, 35, 30, 45, 24, 49, 50, 75, 36, 125, 54, 81, 32, 13, 22, 33, 28, 55, 42, 63, 40, 77, 70, 105, 60, 175, 90, 135, 48, 121, 98, 147, 100, 245, 150, 225, 72, 343, 250, 375, 108, 625, 162, 243, 64, 17, 26, 39
Offset: 1

Views

Author

Keywords

Comments

A permutation of the natural numbers. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
The even bisection, when halved, gives the sequence back. - Antti Karttunen, Jun 28 2014
From Antti Karttunen, Dec 21 2014: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A003961 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 27 16
11 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32
etc.
Sequence A163511 is obtained by scanning the same tree level by level, from right to left. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 2 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is larger than the right child, A252750 the difference between left and right child for each node from node 2 onward.
(End)
-A008836(a(1+n)) gives the corresponding numerator for A323505(n). - Antti Karttunen, Jan 19 2019
(a(2n+1)-1)/2 [= A244154(n)-1, for n >= 0] is a permutation of the natural numbers. - George Beck and Antti Karttunen, Dec 08 2019
From Peter Munn, Oct 04 2020: (Start)
Each term has the same even part (equivalently, the same 2-adic valuation) as its index.
Using the tree depicted in Antti Karttunen's 2014 comment:
Numbers are on the right branch (4 and descendants) if and only if divisible by the square of their largest prime factor (cf. A070003).
Numbers on the left branch, together with 2, are listed in A102750.
(End)
According to Kutz (1981), he learned of this sequence from American mathematician Byron Leon McAllister (1929-2017) who attributed the invention of the sequence to a graduate student by the name of Doudna (first name Paul?) in the mid-1950's at the University of Wisconsin. - Amiram Eldar, Jun 17 2021
From David James Sycamore, Sep 23 2022: (Start)
Alternative (recursive) definition: If n is a power of 2 then a(n)=n. Otherwise, if 2^j is the greatest power of 2 not exceeding n, and if k = n - 2^j, then a(n) is the least m*a(k) that has not occurred previously, where m is an odd prime.
Example: Use recursion with n = 77 = 2^6 + 13. a(13) = 25 and since 11 is the smallest odd prime m such that m*a(13) has not already occurred (see a(27), a(29),a(45)), then a(77) = 11*25 = 275. (End)
The odd bisection, when transformed by replacing all prime(k)^e in a(2*n - 1) with prime(k-1)^e, returns a(n), and thus gives the sequence back. - David James Sycamore, Sep 28 2022

Examples

			From _N. J. A. Sloane_, Aug 22 2022: (Start)
Let c_i = number of 1's in binary expansion of n-1 that have i 0's to their right, and let p(j) = j-th prime.  Then a(n) = Product_i p(i+1)^c_i.
If n=9, n-1 is 1000, c_3 = 1, a(9) = p(4)^1 = 7.
If n=10, n-1 = 1001, c_0 = 1, c_2 = 1, a(10) = p(1)*p(3) = 2*5 = 10.
If n=11, n-1 = 1010, c_1 = 1, c_2 = 1, a(11) = p(2)*p(3) = 15. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A103969. Inverse is A005941 (A156552).
Cf. A125106. [From Franklin T. Adams-Watters, Mar 06 2010]
Cf. A252737 (gives row sums), A252738 (row products), A332979 (largest on row).
Related permutations of positive integers: A163511 (via A054429), A243353 (via A006068), A244154, A253563 (via A122111), A253565, A332977, A334866 (via A225546).
A000120, A003602, A003961, A006519, A053645, A070939, A246278, A250246, A252753, A253552 are used in a formula defining this sequence.
Formulas for f(a(n)) are given for f = A000265, A003963, A007949, A055396, A056239.
Numbers that occur at notable sets of positions in the binary tree representation of the sequence: A000040, A000079, A002110, A070003, A070826, A102750.
Cf. A106737, A290077, A323915, A324052, A324054, A324055, A324056, A324057, A324058, A324114, A324335, A324340, A324348, A324349 for various number-theoretical sequences applied to (i.e., permuted by) this sequence.
k-adic valuation: A007814 (k=2), A337821 (k=3).
Positions of multiples of 3: A091067.
Primorial deflation: A337376 / A337377.
Sum of prime indices of a(n) is A161511, reverse version A359043.
A048793 lists binary indices, ranked by A019565.
A066099 lists standard comps, partial sums A358134 (ranked by A358170).

Programs

  • Haskell
    a005940 n = f (n - 1) 1 1 where
       f 0 y _          = y
       f x y i | m == 0 = f x' y (i + 1)
               | m == 1 = f x' (y * a000040 i) i
               where (x',m) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library)
    (define (A005940 n) (A005940off0 (- n 1))) ;; The off=1 version, utilizing any one of three different offset-0 implementations:
    (definec (A005940off0 n) (cond ((< n 2) (+ 1 n)) (else (* (A000040 (- (A070939 n) (- (A000120 n) 1))) (A005940off0 (A053645 n))))))
    (definec (A005940off0 n) (cond ((<= n 2) (+ 1 n)) ((even? n) (A003961 (A005940off0 (/ n 2)))) (else (* 2 (A005940off0 (/ (- n 1) 2))))))
    (define (A005940off0 n) (let loop ((n n) (i 1) (x 1)) (cond ((zero? n) x) ((even? n) (loop (/ n 2) (+ i 1) x)) (else (loop (/ (- n 1) 2) i (* x (A000040 i)))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Maple
    f := proc(n,i,x) option remember ; if n = 0 then x; elif type(n,'even') then procname(n/2,i+1,x) ; else procname((n-1)/2,i,x*ithprime(i)) ; end if; end proc:
    A005940 := proc(n) f(n-1,1,1) ; end proc: # R. J. Mathar, Mar 06 2010
  • Mathematica
    f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; Table[ f[n], {n, 67}] (* Robert G. Wilson v, Feb 22 2005 *)
    Table[Times@@Prime/@(Join@@Position[Reverse[IntegerDigits[n,2]],1]-Range[DigitCount[n,2,1]]+1),{n,0,100}] (* Gus Wiseman, Dec 28 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, n%2 && (t*=p) || p=nextprime(p+1)); t } \\ M. F. Hasler, Mar 07 2010; update Aug 29 2014
    
  • PARI
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); t \\ Charles R Greathouse IV, Nov 11 2021
    
  • Python
    from sympy import prime
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    print([b(n - 1) for n in range(1, 101)]) # Indranil Ghosh, Apr 10 2017
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A005940(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023

Formula

From Reinhard Zumkeller, Aug 23 2006, R. J. Mathar, Mar 06 2010: (Start)
a(n) = f(n-1, 1, 1)
where f(n, i, x) = x if n = 0,
= f(n/2, i+1, x) if n > 0 is even
= f((n-1)/2, i, x*prime(i)) otherwise. (End)
From Antti Karttunen, Jun 26 2014: (Start)
Define a starting-offset 0 version of this sequence as:
b(0)=1, b(1)=2, [base cases]
and then compute the rest either with recurrence:
b(n) = A000040(1+(A070939(n)-A000120(n))) * b(A053645(n)).
or
b(2n) = A003961(b(n)), b(2n+1) = 2 * b(n). [Compare this to the similar recurrence given for A163511.]
Then define a(n) = b(n-1), where a(n) gives this sequence A005940 with the starting offset 1.
Can be also defined as a composition of related permutations:
a(n+1) = A243353(A006068(n)).
a(n+1) = A163511(A054429(n)). [Compare the scatter plots of this sequence and A163511 to each other.]
This permutation also maps between the partitions as enumerated in the lists A125106 and A112798, providing identities between:
A161511(n) = A056239(a(n+1)). [The corresponding sums ...]
A243499(n) = A003963(a(n+1)). [... and the products of parts of those partitions.]
(End)
From Antti Karttunen, Dec 21 2014 - Jan 04 2015: (Start)
A002110(n) = a(1+A002450(n)). [Primorials occur at (4^n - 1)/3 in the offset-0 version of the sequence.]
a(n) = A250246(A252753(n-1)).
a(n) = A122111(A253563(n-1)).
For n >= 1, A055396(a(n+1)) = A001511(n).
For n >= 2, a(n) = A246278(1+A253552(n)).
(End)
From Peter Munn, Oct 04 2020: (Start)
A000265(a(n)) = a(A000265(n)) = A003961(a(A003602(n))).
A006519(a(n)) = a(A006519(n)) = A006519(n).
a(n) = A003961(a(A003602(n))) * A006519(n).
A007814(a(n)) = A007814(n).
A007949(a(n)) = A337821(n) = A007814(A003602(n)).
a(n) = A225546(A334866(n-1)).
(End)
a(2n) = 2*a(n), or generally a(2^k*n) = 2^k*a(n). - Amiram Eldar, Oct 03 2022
If n-1 = Sum_{i} 2^(q_i-1), then a(n) = Product_{i} prime(q_i-i+1). These are the Heinz numbers of the rows of A125106. If the offset is changed to 0, the inverse is A156552. - Gus Wiseman, Dec 28 2022

Extensions

More terms from Robert G. Wilson v, Feb 22 2005
Sign in a formula switched and Maple program added by R. J. Mathar, Mar 06 2010
Binary tree illustration and keyword tabf added by Antti Karttunen, Dec 21 2014

A070776 Numbers k such that number of terms in the k-th cyclotomic polynomial is equal to the largest prime factor of k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 88, 89, 92, 94, 96, 97, 98, 100
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that A051664(k) = A006530(k).
This is also numbers in the form of 2^i*p^j, i >= 0 and j >= 0, p is an odd prime number. - Lei Zhou, Feb 18 2012
From Zhou's formulation (where the exponents i and j should actually have been specified as i > 0 OR j > 0, to exclude 1) it follows that this is a subsequence of A324109. It also follows that A005940(a(n)) = A324106(a(n)) for all n >= 1. - Antti Karttunen, Feb 15 2019
Also from Zhou's formulation, the union (disjoint) of A000079\{1} and A336101. - Peter Munn, Jul 16 2020
Numbers k>=2 such that A078701(k) = A299766(k). - Juri-Stepan Gerasimov, Jun 02 2021

Examples

			n=10: Cyclotomic[10,x]=1-x+x^2-x^3+x^4 with 5 terms [including 1] which equals largest prime factor (5) of 10=n.
		

Crossrefs

Positions of zeros in A070536.
Subsequence of A324109.
Subsequences: A000079\{1}, A336101.

Programs

  • Mathematica
    Select[Range[1000],(a=FactorInteger[#];b=Length[a];(b==1)||((b==2)&&(a[[1]][[1]]==2)))&] (* Lei Zhou, Feb 18 2012 *)
  • PARI
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1); \\ From A006530.
    A051664(n) = length(select(x->x!=0, Vec(polcyclo(n)))); \\ After program in A051664
    A070536(n) = (A051664(n) - A006530(n));
    isA070776(n) = (!A070536(n)); \\ Antti Karttunen, Feb 15 2019
    k=0; n=0; while(k<10000, n++; if(isA070776(n), k++; write("b070776.txt", k, " ", n)));

A324108 Multiplicative with a(p^e) = A324054((p^e)-1).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 13, 15, 8, 18, 24, 28, 31, 39, 24, 31, 12, 24, 32, 42, 52, 72, 78, 60, 57, 93, 124, 91, 156, 72, 121, 63, 96, 36, 78, 56, 72, 96, 124, 90, 96, 156, 192, 168, 48, 234, 240, 124, 133, 171, 48, 217, 342, 372, 144, 195, 128, 468, 624, 168, 781, 363, 104, 127, 186, 288, 56, 84, 312, 234, 156, 120, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };

A340323 Multiplicative with a(p^e) = (p + 1) * (p - 1)^(e - 1).

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 8, 18, 12, 12, 14, 24, 24, 3, 18, 24, 20, 18, 32, 36, 24, 12, 24, 42, 16, 24, 30, 72, 32, 3, 48, 54, 48, 24, 38, 60, 56, 18, 42, 96, 44, 36, 48, 72, 48, 12, 48, 72, 72, 42, 54, 48, 72, 24, 80, 90, 60, 72, 62, 96, 64, 3, 84, 144, 68, 54
Offset: 1

Views

Author

Keywords

Comments

Starting with any integer and repeatedly applying the map x -> a(x) reaches the fixed point 12 or the loop {3, 4}.

Examples

			a(2^s) = 3 for all s>0.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local  t;
      mul((t[1]+1)*(t[1]-1)^(t[2]-1),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 07 2021
  • Mathematica
    fa[n_]:=fa[n]=FactorInteger[n];
    phi[1]=1; phi[p_, s_]:= (p + 1)*( p - 1)^(s - 1)
    phi[n_]:=Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i,Length[fa[n]]}];
    Array[phi, 245]
  • PARI
    A340323(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,(f[i,1]+1)*((f[i,1]-1)^(f[i,2]-1)))); \\ Antti Karttunen, Jan 06 2021

Formula

a(n) = A167344(n) / A340368(n) = A048250(n) * A326297(n). - Antti Karttunen, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/(2*zeta(2)*zeta(3))) * Product_{p prime} (1 + 2/p^2) = 0.56361239505... . - Amiram Eldar, Nov 12 2022

A324640 Dirichlet inverse of the Doudna sequence, A005940.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -9, 0, 2, 10, -15, 0, -25, 18, 3, 0, -11, -4, -21, 0, 19, 30, -45, 0, -24, 50, -60, 0, -125, -6, -81, 0, 77, 22, 57, 0, -55, 42, 87, 0, -77, -38, -105, 0, -78, 90, -135, 0, -40, 48, -81, 0, -245, 120, -75, 0, -217, 250, -375, 0, -625, 162, -150, 0, 233, -154, -39, 0, 205, -114, -99, 0, -91, 110, 174, 0, -5, -174, -189, 0
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    v324640 = DirInverse(vector(up_to,n,A005940(n)));
    A324640(n) = v324640[n];

Formula

a(1) = 1; for n > 1, a(n) = -Sum_{d|n, dA005940(n/d).
a(p) = -A005940(p) for all primes p.
Showing 1-10 of 11 results. Next