cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A208507 Reordering of A070776 such that the cyclotomic polynomial Phi(A070776, m) is in sorted order for any integer m >= 2.

Original entry on oeis.org

1, 2, 6, 4, 3, 10, 12, 8, 5, 14, 18, 9, 7, 20, 24, 16, 22, 11, 26, 28, 36, 13, 34, 40, 48, 32, 17, 38, 54, 27, 19, 44, 50, 25, 46, 23, 52, 56, 72, 58, 29, 62, 31, 68, 80, 96, 64, 74, 76, 108, 37, 82, 88, 100, 41, 86, 98, 49, 43, 92, 94, 47, 104, 112, 144
Offset: 1

Views

Author

Lei Zhou, Feb 27 2012

Keywords

Comments

When p is an odd prime number and i >= 1, j >= 1, the cyclotomic polynomial
Phi(2^i*p^j, k)
= Phi(2p,k^(2^(i-1)*p^(j-1)))
= Phi(p, -(k^(2^(i-1)*p^(j-1))))
= (111.....1) (p ones) base -(k^(2^(i-1)*p^(j-1)))
Phi(p^j, k)
= Phi(p, k^(p^(j-1)))
= (111.....1) (p ones) base k^(p^(j-1)).
For odd prime p >= 3, the above numbers can be called "Very Generic Repdigit Numbers".
This sequence is a subsequence of A206225.
The Mathematica program is rewritten to be able to generate this sequence to an arbitrary EulerPhi boundary.

Examples

			The first 20 elements of A206225 are 1, 2, 6, 4, 3, 10, 12, 8, 5, 14, 18, 9, 7, 15, 20, 24, 16, 30, 22, 11.
Among these, 15 = 3 * 5 and 30 = 2 * 3 * 5 cannot be written in the form 2^i*p^j and are thus rejected. So the first 18 terms of this sequence are 1, 2, 6, 4, 3, 10, 12, 8, 5, 14, 18, 9, 7, 20, 24, 16, 22, 11.
		

Crossrefs

Programs

  • Mathematica
    eb = 48; phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; elim =  Max[Table[Max[phiinv[n]], {n, 2, eb, 2}]]; t = Select[Range[elim], (a = FactorInteger[#]; b = Length[a]; ((b == 1) || ((b == 2) && (a[[1]][[1]] == 2))) && (EulerPhi[#] <= eb)) &]; SortBy[t, Cyclotomic[#, 2] &]

A002541 a(n) = Sum_{k=1..n-1} floor((n-k)/k).

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 12, 14, 17, 18, 23, 24, 27, 30, 34, 35, 40, 41, 46, 49, 52, 53, 60, 62, 65, 68, 73, 74, 81, 82, 87, 90, 93, 96, 104, 105, 108, 111, 118, 119, 126, 127, 132, 137, 140, 141, 150, 152, 157, 160, 165, 166, 173, 176, 183, 186, 189, 190, 201, 202, 205
Offset: 1

Views

Author

Keywords

Comments

Number of pairs (a, b) with 1 <= a < b <= n, a | b.
The sequence shows how many digit "skips" there have been from 2 to n, a skip being either a prime factor or product thereof. Every time you have a place where you have X skips and the next skip value is X+1, you will have a prime number since a prime number will only add exactly one more skip to get to it. a(n) = Sum_{x=2..n} floor(n/x) - Sum_{x=2..n-1} floor( (n-1)/x) = 1 when prime. - Marius-Paul Dumitrean (marius(AT)neldor.com), Feb 19 2007
A027749(a(n)+1) = n; A027749(a(n)+2) = A020639(n+1). - Reinhard Zumkeller, Nov 22 2003
Number of partitions of n into exactly 2 types of part, where one part is 1, e.g., n=7 gives 1111111, 111112, 11122, 1222, 11113, 133, 1114, 115 and 16, so a(7)=9. - Jon Perry, May 26 2004
The sequence of partial sums of A032741. Idea of proof: floor((n-k)/k) - floor((n-k-1)/k) only increases by 1 when k | n. - George Beck, Feb 12 2012
Also the number of integer partitions of n whose non-1 parts are all equal and with at least one non-1 part. - Gus Wiseman, Oct 07 2018

Examples

			From _Gus Wiseman_, Oct 07 2018: (Start)
The integer partitions whose non-1 parts are all equal and with at least one non-1 part:
  (2)  (3)   (4)    (5)     (6)      (7)       (8)        (9)
       (21)  (22)   (41)    (33)     (61)      (44)       (81)
             (31)   (221)   (51)     (331)     (71)       (333)
             (211)  (311)   (222)    (511)     (611)      (441)
                    (2111)  (411)    (2221)    (2222)     (711)
                            (2211)   (4111)    (3311)     (6111)
                            (3111)   (22111)   (5111)     (22221)
                            (21111)  (31111)   (22211)    (33111)
                                     (211111)  (41111)    (51111)
                                               (221111)   (222111)
                                               (311111)   (411111)
                                               (2111111)  (2211111)
                                                          (3111111)
                                                          (21111111)
(End)
		

References

  • J. P. Gram, Undersoegelser angaaende maengden af primtal under en given graense, Det Kongelige Danskevidenskabernes Selskabs Skrifter, series 6, vol. 2 (1884), 183-288; see Tab. VII: Vaerdier af Funktionen psi(n) og andre numeriske Funktioner, pp. 281-288, especially p. 281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array A003988. Antidiagonal sums of A004199.

Programs

  • Haskell
    a002541 n = sum $ zipWith div [n - 1, n - 2 ..] [1 .. n - 1]
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          numtheory[tau](n)-1+a(n-1))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 12 2021
  • Mathematica
    Table[Sum[Floor[(n-k)/k],{k,n-1}],{n,100}] (* Harvey P. Dale, May 02 2011 *)
  • PARI
    a(n)=sum(k=1,n-1, n\k-1) \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    first(n)=my(v=vector(n),s); for(k=1,n, v[k]=-k+s+=numdiv(k)); v \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import isqrt
    def A002541(n): return (sum(n//k for k in range(1,isqrt(n)+1))<<1)-isqrt(n)**2-n # Chai Wah Wu, Oct 20 2023

Formula

a(n) = -n + Sum_{k=1..n} tau(k). - Vladeta Jovovic, Oct 17 2002
G.f.: 1/(1-x) * Sum_{k>=2} x^k/(1-x^k). - Benoit Cloitre, Apr 23 2003
a(n) = Sum_{i=2..n} floor(n/i). - Jon Perry, Feb 02 2004
a(n) = (Sum_{i=2..n} ceiling((n+1)/i)) - n + 1. - Jon Perry, May 26 2004 [corrected by Jason Yuen, Jul 31 2024]
a(n) = A006218(n) - n. Proof: floor((n-k)/k)+1 = floor(n/k). Then Sum_{k=1..n-1} floor((n-k)/k)+(n-1)+1 = Sum_{k=1..n-1} floor(n/k) + floor(n/n) = Sum_{k=1..n} floor(n/k); i.e., a(n) + n = A006218(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n) = A161886(n) - (2n-1). - Eric Desbiaux, Jul 10 2013
a(n+1) = Sum_{k=1..n} A004199(n-k+1,k). - L. Edson Jeffery, Aug 31 2014
a(n) = -Sum_{i=1..n} floor((n-2i+1)/(n-i+1)). - Wesley Ivan Hurt, May 08 2016
a(n) = Sum_{i=1..floor(n/2)} floor((n-i)/i). - Wesley Ivan Hurt, Nov 16 2017
a(n) = Sum_{k=1..n-1} (A000005(n-k) - 1). - Gus Wiseman, Oct 07 2018
a(n) ~ n * (log(n) + 2*EulerGamma - 2). - Rok Cestnik, Dec 19 2020

Extensions

More terms from David W. Wilson

A075592 Numbers n such that number of distinct prime divisors of n is a divisor of n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Comments

Numbers n such that omega(n) divides n.
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020

Crossrefs

Different from A070776: 78 belongs to this sequence but not to A070776.
Cf. A185307 (complement), A001221, A001222, A074946 (BigOmega(n) divides n).

Programs

  • Mathematica
    Select[Range[2,100],Divisible[#,Length[Select[Divisors[#], PrimeQ]]]&]  (* Harvey P. Dale, Mar 17 2011 *)
  • PARI
    isok(n) = iferr(!(n % omega(n)), E, 0); \\ Michel Marcus, Oct 06 2017
  • R
    library(gmp); omega<-function(x) length(unique(as.numeric(factorize(x))))
    which(c(F,vapply(2:100,function(n) isint(n/omega(n)),T))) # Christian N. K. Anderson, Apr 25 2013
    

Extensions

More terms from David Wasserman, Jan 20 2005
"Distinct" added to name by Christian N. K. Anderson, Apr 23 2013

A331936 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex (semi-achirality).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 144, 148, 152, 162, 169, 172, 178, 184, 192, 196, 202, 206, 208, 212, 214, 216, 224, 243, 244, 256, 262, 288
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

First differs from A331873 in lacking 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of 1, 2, and all numbers equal to a power of 2 (other than 1) times a power of prime(j) for some j > 1 already in the sequence.

Examples

			The sequence of rooted trees ranked by this sequence together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}            152: {1,1,1,8}
    2: {1}             54: {1,2,2,2}          162: {1,2,2,2,2}
    4: {1,1}           56: {1,1,1,4}          169: {6,6}
    6: {1,2}           64: {1,1,1,1,1,1}      172: {1,1,14}
    8: {1,1,1}         72: {1,1,1,2,2}        178: {1,24}
    9: {2,2}           74: {1,12}             184: {1,1,1,9}
   12: {1,1,2}         76: {1,1,8}            192: {1,1,1,1,1,1,2}
   14: {1,4}           81: {2,2,2,2}          196: {1,1,4,4}
   16: {1,1,1,1}       86: {1,14}             202: {1,26}
   18: {1,2,2}         92: {1,1,9}            206: {1,27}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   26: {1,6}           98: {1,4,4}            212: {1,1,16}
   27: {2,2,2}        104: {1,1,1,6}          214: {1,28}
   28: {1,1,4}        106: {1,16}             216: {1,1,1,2,2,2}
   32: {1,1,1,1,1}    108: {1,1,2,2,2}        224: {1,1,1,1,1,4}
   36: {1,1,2,2}      112: {1,1,1,1,4}        243: {2,2,2,2,2}
   38: {1,8}          122: {1,18}             244: {1,1,18}
   46: {1,9}          128: {1,1,1,1,1,1,1}    256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    144: {1,1,1,1,2,2}      262: {1,32}
   49: {4,4}          148: {1,1,12}           288: {1,1,1,1,1,2,2}
		

Crossrefs

A superset of A000079.
The non-lone-child-avoiding version is A320230.
The non-semi version is A320269.
These trees are counted by A331933.
Not requiring semi-achirality gives A331935.
The fully-achiral case is A331992.
Achiral trees are counted by A003238.
Numbers with at most one distinct odd prime factor are A070776.
Matula-Goebel numbers of achiral rooted trees are A214577.
Matula-Goebel numbers of semi-identity trees are A306202.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[DeleteCases[FactorInteger[n],{2,_}]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

Formula

Intersection of A320230 and A331935.

A324106 Multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 15, 16, 11, 14, 21, 20, 27, 30, 45, 24, 49, 50, 75, 36, 125, 30, 81, 32, 45, 22, 45, 28, 55, 42, 75, 40, 77, 54, 105, 60, 35, 90, 135, 48, 121, 98, 33, 100, 245, 150, 75, 72, 63, 250, 375, 60, 625, 162, 63, 64, 125, 90, 39, 44, 135, 90, 99, 56, 91, 110, 147, 84, 135, 150, 189, 80, 143, 154, 231, 108, 55
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Question: are there any other numbers n besides 1 and those in A070776, for which a(n) = A005940(n)? At least not below 2^25. This is probably easy to prove.

Examples

			For n = 85 = 5*17, a(85) = A005940(5) * A005940(17) = 5*11 = 55. Note that A005940(5) is obtained from the binary expansion of 5-1 = 4, which is "100", and A005940(17) is obtained from the binary expansion of 17-1 = 16, which is "1000".
		

Crossrefs

Cf. A005940, A070776, A324107 (fixed points), A324108, A324109.

Programs

  • Mathematica
    nn = 128; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[Times @@ Map[a, Power @@@ FactorInteger[#]] &, nn] (* Michael De Vlieger, Sep 18 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); };

A320230 Matula-Goebel numbers of rooted trees in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 64, 67, 68, 71, 72, 74, 76, 79, 80, 81, 82, 83, 86, 88, 89, 92, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

A number is in the sequence iff it belongs to A070776 and its prime indices already belong to the sequence. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    smakQ[n_]:=And[SameQ@@DeleteCases[primeMS[n],1],And@@smakQ/@DeleteCases[primeMS[n],1]];Select[Range[100],smakQ[#]&]
  • PARI
    is(n) = while((n>>=valuation(n,2)) > 1, isprimepower(n,&n) || return(0); n=primepi(n)); 1; \\ Kevin Ryde, Apr 04 2021

A320269 Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

First differs from A331871 in lacking 1589.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
		

Crossrefs

The same-tree version is A291441.
Not requiring lone-child-avoidance gives A320230.
The enumeration of these trees by vertices is A320268.
The semi-lone-child-avoiding version is A331936.
If the non-leaf branches are all different instead of equal we get A331965.
The fully-achiral case is A331967.
Achiral rooted trees are counted by A003238.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A320268 Number of unlabeled series-reduced rooted trees with n nodes where the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 44, 70, 119, 189, 314, 506, 830, 1336, 2186, 3522, 5737, 9266, 15047, 24313, 39444, 63759, 103322, 167098, 270616, 437714, 708676, 1146390, 1855582, 3002017, 4858429, 7860454, 12720310, 20580764, 33303260, 53884144, 87190964
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A167865).
A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 1 through a(8) = 9 rooted trees:
  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)
               (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))
                        (oo(oo))  (oo(ooo))   (oo(oooo))
                                  (ooo(oo))   (ooo(ooo))
                                  ((oo)(oo))  (oooo(oo))
                                  (o(o(oo)))  (o(o(ooo)))
                                              (o(oo)(oo))
                                              (o(oo(oo)))
                                              (oo(o(oo)))
		

Crossrefs

Programs

  • Mathematica
    saum[n_]:=Sum[If[DeleteCases[ptn,1]=={},1,saum[DeleteCases[ptn,1][[1]]]],{ptn,Select[IntegerPartitions[n-1],And[Length[#]!=1,SameQ@@DeleteCases[#,1]]&]}];
    Array[saum,20]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(1) = 1; a(2) = 0; a(n > 2) = 1 + Sum_{k = 2..n-2} floor((n-1)/k) * a(k).

A324109 Numbers n such that A324108(n) = A324054(n-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108, 109, 112, 113, 116, 118, 121
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A324054(n-1) is equal to A324108(n), which is a multiplicative function with A324108(p^e) = A324054((p^e)-1).
Prime powers (A000961) is a subsequence by definition.
Also A070776 is a subsequence. This follows because for every n of the form 2^i * p^j (where p is an odd prime, and i >= 0, j >= 0), we have A324108(2^i * p^j) = A324054(2^i - 1)*A324054(p^j - 1) = sigma(A005940(2^i)) * sigma(A005940(p^j)). Because A005940(1) = 1, and A005940(2n) = 2*A005940(n), the powers of two are among the fixed points of A005940 (cf. A029747), thus the left half of product is sigma(2^i), while on the other hand, we know that A005940(p^j) is odd (because A005940 also preserves parity), and thus the whole product is equal to sigma(2^i * A005940(p^j)) = sigma(A005940(2^i * p^j)) = A324054((2^i * p^j)-1).
See subsequence A324111 for less regular solutions.

Crossrefs

Union of A070776 and A324111.
Cf. A000961 (a subsequence), A029747, A324054, A324107, A324108, A324110 (complement).

Programs

  • PARI
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };
    isA324109(n) = (A324054(n-1)==A324108(n));
    for(n=1,121,if(isA324109(n), print1(n,", ")));

A324111 Numbers n for which A324108(n) = A324054(n-1) and which are neither prime powers nor of the form 2^i * p^j, where p is an odd prime, with either exponent i or j > 0.

Original entry on oeis.org

1, 87, 174, 348, 696, 1392, 2091, 2784, 4182, 5568, 8364, 11136, 16683, 16728, 22272, 33215, 33366, 33456, 44544, 66430, 66732, 66912, 89088, 132860, 133464, 133824, 178176, 265720, 266928, 267179, 267648, 356352, 531440, 533856, 534358, 535296, 712704, 1062880, 1066877, 1067712, 1068716, 1070592, 1319235, 1425408
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Setwise difference of A324109 and A070776.
Setwise difference of A070537 and A324110.
If an odd number n > 1 is present, then all 2^k * n are present also. Odd terms > 1 are given in A324112.

Examples

			87 is a term, as 87 = 3*29, A324054(3-1) = 4, A324054(29-1) = 156, and A324108(87) = 4*156 = 624 = A324054(87-1).
		

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };
    isA324111(n) = ((1!=omega(n))&&(1!=omega(A000265(n)))&&(A324054(n-1)==A324108(n)));
    for(n=1,2^20,if(isA324111(n), print1(n,", ")))
Showing 1-10 of 19 results. Next