A324738
Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 26, 42, 72, 120, 232, 376, 752, 1128, 2256, 4512, 8256, 13632, 27264, 42048, 82944, 158976, 313344, 497664, 995328, 1700352, 3350016, 5815296, 11630592, 17491968, 34983936, 56954880, 108933120, 210788352, 418258944, 804667392, 1609334784
Offset: 0
The a(0) = 1 through a(6) = 26 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,3} {4} {4} {4}
{1,3} {5} {5}
{2,4} {1,3} {6}
{3,4} {1,5} {1,3}
{2,4} {1,5}
{2,5} {1,6}
{3,4} {2,4}
{4,5} {2,5}
{2,4,5} {2,6}
{3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{1,3,6}
{1,5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324744. The case of subsets of {2...n} is
A324739. The strict integer partition version is
A324749. The integer partition version is
A324754. The Heinz number version is
A324759. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324755
Number of integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 10, 7, 16, 14, 23, 23, 35, 34, 53, 54, 75, 80, 112, 115, 160, 169, 223, 244, 315, 339, 442, 478, 604, 664, 832, 910, 1131, 1245, 1524, 1689, 2054, 2263, 2743, 3039, 3634, 4042, 4809, 5343, 6326, 7035, 8276, 9217, 10795, 12011
Offset: 0
The a(2) = 1 through a(10) = 10 integer partitions (A = 10):
(2) (3) (4) (5) (6) (7) (8) (9) (A)
(22) (33) (43) (44) (54) (55)
(42) (52) (62) (63) (64)
(222) (422) (72) (73)
(2222) (333) (82)
(522) (433)
(442)
(622)
(4222)
(22222)
Cf.
A000837,
A001462,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324695,
A324696,
A324744.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@If[k==1,{},FactorInteger[k]]]]&]],{n,0,30}]
A324759
Heinz numbers of integer partitions containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 73, 74, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
The subset version is
A324738, with maximal case
A324744. The strict integer partition version is
A324749. The integer partition version is
A324754. An infinite version is
A324694.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A276625,
A289509,
A290822,
A306844,
A324695,
A324750,
A324755,
A324760.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[DeleteCases[primeMS[#],1],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]
A324754
Number of integer partitions of n containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 7, 8, 11, 12, 19, 19, 30, 34, 46, 50, 71, 76, 104, 119, 151, 171, 225, 247, 315, 360, 446, 504, 629, 703, 867, 986, 1192, 1346, 1636, 1837, 2204, 2500, 2965, 3348, 3980, 4475, 5276, 5963, 6973, 7852, 9194, 10335, 12009, 13536, 15650, 17589
Offset: 0
The a(1) = 1 through a(8) = 11 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (43) (44)
(31) (11111) (42) (52) (62)
(1111) (51) (61) (71)
(222) (331) (422)
(3111) (511) (611)
(111111) (31111) (2222)
(1111111) (3311)
(5111)
(311111)
(11111111)
Cf.
A000837,
A001462,
A007097,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324695,
A324750,
A324755,
A324760.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
A324760
Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
41: {13}
The subset version is
A324739, with maximal case
A324762. The strict integer partition version is
A324750. The integer partition version is
A324755. An infinite version is
A324694.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A289509,
A290822,
A306844,
A324695,
A324696,
A324737,
A324744.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[primeMS[#],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]
A324762
Number of maximal subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 40, 40, 52, 52, 64, 64, 72, 72, 144, 144, 176, 176, 200, 200, 232, 232, 464, 464, 464, 464, 536, 536, 1072, 1072, 1072, 1072, 2144, 2144, 2400, 2400, 2400, 2400, 4800, 4800, 4800, 4800, 4800
Offset: 1
The a(2) = 1 through a(9) = 6 maximal subsets:
{2} {2} {2,4} {3,4} {3,4,6} {3,4,6} {3,4,6,8} {2,4,5,6,8}
{3} {3,4} {2,4,5} {2,4,5,6} {3,6,7} {3,6,7,8} {2,5,6,7,8}
{2,4,5,6} {2,4,5,6,8} {3,4,6,8,9}
{2,5,6,7} {2,5,6,7,8} {3,6,7,8,9}
{4,5,6,8,9}
{5,6,7,8,9}
The non-maximal version is
A324739.
The version for subsets of {1...n} is
A324744.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019
A324739
Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1
The a(1) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {2,6}
{2,4,5} {3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324762. The case of subsets of {1...n} is
A324738. The strict integer partition version is
A324750. The integer partition version is
A324755. The Heinz number version is
A324760. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324749
Number of strict integer partitions of n containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 4, 3, 4, 6, 6, 8, 11, 10, 14, 14, 19, 21, 26, 28, 35, 38, 44, 50, 60, 65, 79, 88, 98, 113, 131, 144, 165, 185, 211, 234, 268, 297, 334, 374, 420, 470, 525, 584, 649, 727, 801, 902, 998, 1100, 1220, 1357, 1500, 1657, 1833, 2029, 2220, 2462
Offset: 0
The a(0) = 1 through a(10) = 6 strict integer partitions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,1) (4,2) (4,3) (6,2) (5,4) (6,4)
(5,1) (5,2) (7,1) (6,3) (7,3)
(6,1) (7,2) (8,2)
(9,1)
(6,3,1)
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
Showing 1-8 of 8 results.
Comments