cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A120383 A number n is included if it satisfies: m divides n for all m's where the m-th prime divides n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 30, 32, 36, 48, 54, 56, 60, 64, 72, 78, 84, 90, 96, 108, 112, 120, 128, 144, 150, 152, 156, 162, 168, 180, 192, 196, 216, 224, 234, 240, 252, 256, 270, 288, 300, 304, 312, 324, 330, 336, 360, 384, 390, 392, 414, 420, 432, 444, 448
Offset: 1

Views

Author

Leroy Quet, Jun 29 2006

Keywords

Comments

From Rémy Sigrist, Apr 08 2017: (Start)
If n is in the sequence, then 2*n is also in the sequence.
a(2) = 2 is the only prime number in the sequence.
a(1) = 1 is the only odd number in the sequence.
(End)
Numbers divisible by all of their prime indices. A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 78 = prime(1) * prime(2) * prime(6) are {1,2,6}, all of which divide 78, so 78 is in the sequence. - Gus Wiseman, Mar 23 2019

Examples

			28 = 2^2 * 7. 2 is the first prime, 7 is the 4th prime. Since 1 and 4 both divide 28, then 28 is included in the sequence.
78 = 2 * 3 * 13. 2 is the first prime, 3 is the 2nd prime and 13 is the 6th prime. Since 1 and 2 and 6 each divide 78, then 78 is in the sequence. (Note that 1 * 2 * 6 does not divide 78.)
From _Gus Wiseman_, Mar 23 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  16: {1,1,1,1}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  64: {1,1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Maple
    A000040inv := proc(n) local i; i:=1 ; while true do if ithprime(i) = n then RETURN(i) ; fi ; i := i+1 ; end ; end: isA120383 := proc(n) local pl,p,i,j ; pl := ifactors(n) ; pl := pl[2] ; for i from 1 to nops(pl) do p := pl[i] ; j := A000040inv(p[1]) ; if n mod j <> 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: for n from 2 to 800 do if isA120383(n) then printf("%d,",n); fi ; od ; # R. J. Mathar, Sep 02 2006
  • Mathematica
    {1}~Join~Select[Range[2, 450], Function[n, AllTrue[PrimePi /@ FactorInteger[n][[All, 1]], Mod[n, #] == 0 &]]] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ok(n) = my (f=factor(n)); for (i=1, #f~, if (n % primepi(f[i,1]), return (0))); return (1) \\ Rémy Sigrist, Apr 08 2017

Extensions

More terms from R. J. Mathar, Sep 02 2006
Initial 1 prepended by Rémy Sigrist, Apr 08 2017

A352486 Heinz numbers of non-self-conjugate integer partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. The sequence lists all Heinz numbers of partitions whose Heinz number is different from that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   4: (1,1)
   5: (3)
   7: (4)
   8: (1,1,1)
  10: (3,1)
  11: (5)
  12: (2,1,1)
  13: (6)
  14: (4,1)
  15: (3,2)
  16: (1,1,1,1)
  17: (7)
  18: (2,2,1)
For example, the self-conjugate partition (4,3,3,1) has Heinz number 350, so 350 is not in the sequence.
		

Crossrefs

The complement is A088902, counted by A000700.
These partitions are counted by A330644.
These are the positions of nonzero terms in A352491.
A000041 counts integer partitions, strict A000009.
A098825 counts permutations by unfixed points.
A238349 counts compositions by fixed points, rank statistic A352512.
A325039 counts partitions w/ same product as conjugate, ranked by A325040.
A352523 counts compositions by unfixed points, rank statistic A352513.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition
- A122111 = rank of conjugate partition
- A296150 = parts of partition, reverse A112798, conjugate A321649
- A352487 = less than conjugate, counted by A000701
- A352488 = greater than or equal to conjugate, counted by A046682
- A352489 = less than or equal to conjugate, counted by A046682
- A352490 = greater than conjugate, counted by A000701

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y0]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#!=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) != A122111(a(n)).

A324849 Positive integers divisible by none of their prime indices > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) andmap(t -> not ((n/numtheory:-pi(t))::integer), numtheory:-factorset(n) minus {2}) end proc:
    select(filter, [$1..200]); # Robert Israel, Mar 20 2019
  • Mathematica
    Select[Range[100],!Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>If[p==2,False,Divisible[#,PrimePi[p]]]]&]
  • PARI
    is(n) = my(f=factor(n)[, 1]~, idc=[]); for(k=1, #f, idc=concat(idc, [primepi(f[k])])); for(t=1, #idc, if(idc[t]==1, next); if(n%idc[t]==0, return(0))); 1 \\ Felix Fröhlich, Mar 21 2019

A324847 Numbers divisible by at least one of their prime indices.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
If n is in the sequence, then so are all multiples of n. - Robert Israel, Mar 19 2019

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  34: {1,7}
  36: {1,1,2,2}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= map(numtheory:-pi, numtheory:-factorset(n));
      ormap(t -> n mod t = 0, F);
    end proc:
    select(filter, [$1..200]); # Robert Israel, Mar 19 2019
  • Mathematica
    Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>Divisible[#,PrimePi[p]]]&]
  • PARI
    isok(n) = {my(f = factor(n)[,1]); for (k=1, #f, if (!(n % primepi(f[k])), return (1));); return (0);} \\ Michel Marcus, Mar 19 2019

A324844 Number of unlabeled rooted trees with n nodes where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 32, 71, 170, 406, 1002, 2469, 6204, 15644, 39871, 102116, 263325, 682079, 1775600, 4640220
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 13 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (o(oo))    (o(ooo))
                          (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          (o((o)))   ((o(oo)))
                          ((((o))))  (o((oo)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324845.

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[!submultQ[b,#],{b,DeleteCases[#,{}]}]&];
    Table[Length[rallt[n]],{n,10}]

A324848 Number of prime indices of n (counted with multiplicity) that divide n.

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 0, 3, 0, 1, 0, 3, 0, 1, 1, 4, 0, 3, 0, 2, 0, 1, 0, 4, 0, 1, 0, 3, 0, 3, 0, 5, 0, 1, 0, 4, 0, 1, 0, 3, 0, 2, 0, 2, 1, 1, 0, 5, 0, 1, 0, 2, 0, 4, 1, 4, 0, 1, 0, 4, 0, 1, 0, 6, 0, 2, 0, 2, 0, 1, 0, 5, 0, 1, 2, 2, 0, 3, 0, 4, 0, 1, 0, 4, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6776 are {1,1,1,4,5,5}, four of which {1,1,1,4} divide 6776, so a(6776) = 4.
		

Crossrefs

The version for distinct prime indices is A324852.
Positions of zeros are A324846.
Positions of ones are A324856.

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/;Divisible[n,PrimePi[p]]]],{n,100}]

A324931 Integers in the list of quotients of positive integers by their product of prime indices.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 12, 7, 5, 32, 9, 24, 14, 10, 64, 18, 48, 28, 20, 128, 36, 19, 13, 21, 15, 96, 27, 56, 40, 256, 72, 38, 26, 11, 42, 30, 192, 54, 112, 17, 80, 512, 144, 76, 52, 22, 84, 60, 384, 49, 23, 35, 53, 108, 37, 224, 25, 57, 39, 34, 160, 63, 1024
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

These quotients are given by A324932(n)/A324933(n).
This is a permutation of the positive integers, with inverse A324934.

Examples

			The sequence of quotients n/A003963(n) begins: 1, 2, 3/2, 4, 5/3, 3, 7/4, 8, 9/4, 10/3, 11/5, 6, 13/6, 7/2, 5/2, 16, ...
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n/Times@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]^k],{n,100}],IntegerQ]

Formula

a(n) = A324850(n)/A003963(A324850(n)).

A324840 Number of fully recursively anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 14, 23, 46, 85, 165, 313, 625, 1225, 2459, 4919, 9928, 20078, 40926, 83592
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The a(1) = 1 through a(7) = 14 fully recursively anti-transitive rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)      (oooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))     ((ooooo))
                 (((o)))  (((oo)))   (((ooo)))    (((oooo)))
                          ((o)(o))   ((o)(oo))    ((o)(ooo))
                          ((((o))))  ((((oo))))   ((oo)(oo))
                                     (((o)(o)))   ((((ooo))))
                                     (((((o)))))  (((o))(oo))
                                                  (((o)(oo)))
                                                  ((o)((oo)))
                                                  ((o)(o)(o))
                                                  (((((oo)))))
                                                  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    dallt[n_]:=Select[Union[Sort/@Join@@(Tuples[dallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&];
    Table[Length[dallt[n]],{n,10}]

A324768 Number of fully anti-transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 27, 60, 152, 376, 968, 2492, 6549, 17259, 46000, 123214, 332304, 900406, 2451999, 6703925
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root.

Examples

			The a(1) = 1 through a(6) = 11 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          ((o(o)))   ((o(oo)))
                          ((((o))))  ((oo(o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     (((o(o))))
                                     ((o((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
    Table[Length[Select[rtall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]

Extensions

a(17)-a(20) from Jinyuan Wang, Jun 20 2020

A324838 Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 10 rooted trees:
  o  ((o))  ((oo))   ((ooo))    ((oooo))
            (((o)))  (((oo)))   (((ooo)))
                     ((o)(o))   ((o)(oo))
                     ((o(o)))   ((o(oo)))
                     ((((o))))  ((oo(o)))
                                ((((oo))))
                                (((o)(o)))
                                (((o(o))))
                                ((o((o))))
                                (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
    Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
Showing 1-10 of 24 results. Next