cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A324850 Numbers divisible by the product of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 28, 30, 32, 36, 48, 56, 60, 64, 72, 96, 112, 120, 128, 144, 152, 156, 168, 180, 192, 216, 224, 240, 256, 288, 304, 312, 330, 336, 360, 384, 432, 448, 476, 480, 512, 576, 608, 624, 660, 672, 720, 768, 784, 828, 840, 848, 864, 888, 896
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with product A003963(n). For example, the prime indices of 30 are {1,2,3}, with product 6, which divides 30, so 30 is in the sequence.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  16: {1,1,1,1}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  48: {1,1,1,1,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  64: {1,1,1,1,1,1}
  72: {1,1,1,2,2}
  96: {1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Divisible[#,Times@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]^k]]&]
  • PARI
    isok(n) = my(f=factor(n)); !(n % prod(k=1, #f~, primepi(f[k,1])^f[k,2])); \\ Michel Marcus, Mar 22 2019

Formula

n/A003963(n) = A324933(n)/A324934(n).

A047967 Number of partitions of n with some part repeated.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 7, 10, 16, 22, 32, 44, 62, 83, 113, 149, 199, 259, 339, 436, 563, 716, 913, 1151, 1453, 1816, 2271, 2818, 3496, 4309, 5308, 6502, 7959, 9695, 11798, 14298, 17309, 20877, 25151, 30203, 36225, 43323, 51748, 61651, 73359, 87086, 103254, 122164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with at least one even part. - Vladeta Jovovic, Sep 10 2003. Example: a(5)=4 because we have [4,1], [3,2], [2,2,1] and [2,1,1,1] ([5], [3,1,1] and [1,1,1,1,1] do not qualify). - Emeric Deutsch, Mar 30 2006
Also number of partitions of n (where it is assumed that the least part is 0) such that at least one difference is at least two. Example: a(5)=4 because we have [5,0], [4,1,0], [3,2,0] and [3,1,1,0] ([2,2,1,0], [2,1,1,1,0] and [1,1,1,1,1,0] do not qualify). - Emeric Deutsch, Mar 30 2006
The Heinz numbers of these partitions (with some part repeated) are given by A013929. Equivalent to Vladeta Jovovic's comment, a(n) is also the number of integer partitions whose product of parts is even. The Heinz numbers of these latter partitions are given by A324929. - Gus Wiseman, Mar 23 2019

Examples

			a(5) = 4 because we have [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1] ([5], [4,1] and [3,2] do not qualify).
		

Crossrefs

Column k=1 of A320264.

Programs

  • Maple
    g:=sum(x^(2*k)*product(1+x^j,j=k+1..70)/product(1-x^j,j=1..k),k=1..40): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..44); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    Table[PartitionsP[n]-PartitionsQ[n],{n,0,50}] (* Harvey P. Dale, Jan 17 2019 *)
  • PARI
    x='x+O('x^66); concat([0,0], Vec(1/eta(x)-eta(x^2)/eta(x))) \\ Joerg Arndt, Jun 21 2011

Formula

a(n) = A000041(n) - A000009(n).
G.f.: Sum_{k>=1} x^(2*k)*(Product_{j>=k+1} (1+x^j)) / Product_{j=1..k} (1-x^j) = Sum_{k>=1} x^(2*k)/(Product_{j=1..2*k} (1-x^j)*Product_{j>=k} (1-x^(2*j+1))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/P(x) - P(x^2)/P(x) where P(x) = Product_{k>=1} (1-x^k). - Joerg Arndt, Jun 21 2011
a(n) = p(n-2)+p(n-4)-p(n-10)-p(n-14)+...+(-1^(j-1))*p(n-j*(3*j-1)) + (-1^(j-1))*p(n-j*(3*j+1))+..., where p(n) = A000041(n). - Gregory L. Simay, Aug 28 2023

A120383 A number n is included if it satisfies: m divides n for all m's where the m-th prime divides n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 30, 32, 36, 48, 54, 56, 60, 64, 72, 78, 84, 90, 96, 108, 112, 120, 128, 144, 150, 152, 156, 162, 168, 180, 192, 196, 216, 224, 234, 240, 252, 256, 270, 288, 300, 304, 312, 324, 330, 336, 360, 384, 390, 392, 414, 420, 432, 444, 448
Offset: 1

Views

Author

Leroy Quet, Jun 29 2006

Keywords

Comments

From Rémy Sigrist, Apr 08 2017: (Start)
If n is in the sequence, then 2*n is also in the sequence.
a(2) = 2 is the only prime number in the sequence.
a(1) = 1 is the only odd number in the sequence.
(End)
Numbers divisible by all of their prime indices. A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 78 = prime(1) * prime(2) * prime(6) are {1,2,6}, all of which divide 78, so 78 is in the sequence. - Gus Wiseman, Mar 23 2019

Examples

			28 = 2^2 * 7. 2 is the first prime, 7 is the 4th prime. Since 1 and 4 both divide 28, then 28 is included in the sequence.
78 = 2 * 3 * 13. 2 is the first prime, 3 is the 2nd prime and 13 is the 6th prime. Since 1 and 2 and 6 each divide 78, then 78 is in the sequence. (Note that 1 * 2 * 6 does not divide 78.)
From _Gus Wiseman_, Mar 23 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  16: {1,1,1,1}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  64: {1,1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Maple
    A000040inv := proc(n) local i; i:=1 ; while true do if ithprime(i) = n then RETURN(i) ; fi ; i := i+1 ; end ; end: isA120383 := proc(n) local pl,p,i,j ; pl := ifactors(n) ; pl := pl[2] ; for i from 1 to nops(pl) do p := pl[i] ; j := A000040inv(p[1]) ; if n mod j <> 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: for n from 2 to 800 do if isA120383(n) then printf("%d,",n); fi ; od ; # R. J. Mathar, Sep 02 2006
  • Mathematica
    {1}~Join~Select[Range[2, 450], Function[n, AllTrue[PrimePi /@ FactorInteger[n][[All, 1]], Mod[n, #] == 0 &]]] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ok(n) = my (f=factor(n)); for (i=1, #f~, if (n % primepi(f[i,1]), return (0))); return (1) \\ Rémy Sigrist, Apr 08 2017

Extensions

More terms from R. J. Mathar, Sep 02 2006
Initial 1 prepended by Rémy Sigrist, Apr 08 2017

A324851 Numbers > 1 divisible by the sum of their prime indices.

Original entry on oeis.org

2, 4, 6, 12, 15, 16, 20, 30, 35, 36, 42, 48, 56, 88, 99, 112, 120, 126, 130, 135, 143, 144, 160, 162, 180, 192, 210, 216, 220, 221, 228, 231, 242, 250, 256, 270, 275, 280, 288, 297, 300, 308, 322, 330, 338, 360, 396, 400, 408, 429, 435, 440, 455, 468, 480, 493
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n). For example, the prime indices of 99 are {2,2,5}, with sum 9, a divisor of 99, so 99 is in the sequence.
For any k>=2, let d be a divisor of k such that d > A056239(k). Then 2^(d-A056239(k))*k is in the sequence. Similarly if k is in the sequence with d = A056239(k), then 2^d*k is in the sequence. - Robert Israel, Mar 19 2019

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    4: {1,1}
    6: {1,2}
   12: {1,1,2}
   15: {2,3}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   35: {3,4}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   56: {1,1,1,4}
   88: {1,1,1,5}
   99: {2,2,5}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  130: {1,3,6}
  135: {2,2,2,3}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t; n mod add(numtheory:-pi(t[1])*t[2],t=ifactors(n)[2]) = 0 end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 19 2019
  • Mathematica
    Select[Range[2,100],Divisible[#,Plus@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]]&]
  • PARI
    isok(n) = {my(f = factor(n)); (n!=1) && !(n % sum(k=1, #f~, primepi(f[k,1])*f[k,2]));} \\ Michel Marcus, Mar 19 2019

A324846 Positive integers divisible by none of their prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 5673 are {2,11,18}, none of which divides 5673, so 5673 belongs to the sequence.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  39: {2,6}
		

Crossrefs

Programs

  • Maple
    q:= n-> ormap(i-> irem(n, numtheory[pi](i[1]))=0, ifactors(n)[2]):
    remove(q, [$1..200])[];  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Select[Range[100],!Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>Divisible[#,PrimePi[p]]]&]
  • PARI
    isok(n) = {my(f = factor(n)[,1]); for (k=1, #f, if (!(n % primepi(f[k])), return (0));); return (1);} \\ Michel Marcus, Mar 19 2019

A324849 Positive integers divisible by none of their prime indices > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) andmap(t -> not ((n/numtheory:-pi(t))::integer), numtheory:-factorset(n) minus {2}) end proc:
    select(filter, [$1..200]); # Robert Israel, Mar 20 2019
  • Mathematica
    Select[Range[100],!Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>If[p==2,False,Divisible[#,PrimePi[p]]]]&]
  • PARI
    is(n) = my(f=factor(n)[, 1]~, idc=[]); for(k=1, #f, idc=concat(idc, [primepi(f[k])])); for(t=1, #idc, if(idc[t]==1, next); if(n%idc[t]==0, return(0))); 1 \\ Felix Fröhlich, Mar 21 2019

A324844 Number of unlabeled rooted trees with n nodes where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 32, 71, 170, 406, 1002, 2469, 6204, 15644, 39871, 102116, 263325, 682079, 1775600, 4640220
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 13 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (o(oo))    (o(ooo))
                          (((oo)))   (((ooo)))
                          ((o)(o))   ((o)(oo))
                          (o((o)))   ((o(oo)))
                          ((((o))))  (o((oo)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324845.

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[!submultQ[b,#],{b,DeleteCases[#,{}]}]&];
    Table[Length[rallt[n]],{n,10}]

A324848 Number of prime indices of n (counted with multiplicity) that divide n.

Original entry on oeis.org

0, 1, 0, 2, 0, 2, 0, 3, 0, 1, 0, 3, 0, 1, 1, 4, 0, 3, 0, 2, 0, 1, 0, 4, 0, 1, 0, 3, 0, 3, 0, 5, 0, 1, 0, 4, 0, 1, 0, 3, 0, 2, 0, 2, 1, 1, 0, 5, 0, 1, 0, 2, 0, 4, 1, 4, 0, 1, 0, 4, 0, 1, 0, 6, 0, 2, 0, 2, 0, 1, 0, 5, 0, 1, 2, 2, 0, 3, 0, 4, 0, 1, 0, 4, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6776 are {1,1,1,4,5,5}, four of which {1,1,1,4} divide 6776, so a(6776) = 4.
		

Crossrefs

The version for distinct prime indices is A324852.
Positions of zeros are A324846.
Positions of ones are A324856.

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/;Divisible[n,PrimePi[p]]]],{n,100}]

A324843 Number of unlabeled rooted trees with n nodes where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 8, 9, 15, 17, 31, 35, 57, 70, 111, 136, 213, 265, 405, 517, 763, 987, 1458, 1893, 2736, 3611, 5161, 6836, 9702
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A subset of totally transitive rooted trees (A318185).

Examples

			The a(1) = 1 through a(8) = 8 rooted trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)    (ooooooo)
                (o(o))  (oo(o))  (oo(oo))   (ooo(oo))   (ooo(ooo))
                                 (ooo(o))   (oooo(o))   (oooo(oo))
                                 (o(o)(o))  (oo(o)(o))  (ooooo(o))
                                                        (oo(o)(oo))
                                                        (ooo(o)(o))
                                                        (o(o)(o)(o))
                                                        (o(o)(o(o)))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324842.

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[submultQ[b,#],{b,#}]&];
    Table[Length[rallt[n]],{n,10}]

A324852 Number of distinct prime indices of n that divide n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			60060 has 7 prime indices {1,1,2,3,4,5,6}, all of which divide 60060, and 6 of which are distinct, so a(60060) = 6.
		

Crossrefs

The version for all prime indices (counted with multiplicity) is A324848.
Positions of zeros are A324846.
Positions of ones are A323440.

Programs

  • Maple
    a:= n-> add(`if`(irem(n, numtheory[pi](i[1]))=0, 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)[,1]); sum(k=1, #f, !(n % primepi(f[k])));} \\ Michel Marcus, Mar 19 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/(k*prime(k)) = 0.848969... (A124012). - Amiram Eldar, Jan 11 2025
Showing 1-10 of 18 results. Next