cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A188431 The number of n-full sets, F(n).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 10, 13, 14, 17, 20, 25, 28, 34, 40, 46, 54, 62, 69, 80, 90, 102, 115, 131, 144, 167, 186, 213, 239, 273, 304, 349, 388, 441, 495, 563, 625, 710, 790, 890, 990, 1114, 1232, 1387, 1530, 1713, 1894, 2119, 2330, 2605, 2866, 3192, 3512, 3910, 4289, 4774, 5237, 5809, 6377, 7068, 7739
Offset: 0

Views

Author

Madjid Mirzavaziri, Mar 31 2011

Keywords

Comments

Let A be a set of positive integers. We say that A is n-full if (sum A)=[n] for a positive integer n, where (sum A) is the set of all positive integers which are a sum of distinct elements of A and [n]={1,2,...,n}. Then F(n) denotes the number of n-full sets.
Also the number of distinct and complete partitions of n, by definition, which are counted by A000009 and A126796. - George Beck, Nov 06 2017
An integer partition of n is complete (see also A325781) if every number from 0 to n is the sum of some submultiset of the parts. The Heinz numbers of these partitions are given by A325986. - Gus Wiseman, May 31 2019

Examples

			a(26) = 10, because there are 10 26-full sets: {1,2,4,5,6,8}, {1,2,3,5,7,8}, {1,2,3,5,6,9}, {1,2,3,4,7,9}, {1,2,3,4,6,10}, {1,2,3,4,5,11}, {1,2,4,8,11}, {1,2,4,7,12}, {1,2,4,6,13}, {1,2,3,7,13}.
G.f.: 1 = 1/(1+x) + 1*x/((1+x)*(1+x^2)) + 0*x^2/((1+x)*(1+x^2)*(1+x^3)) + 1*x^3/((1+x)*(1+x^2)*(1+x^3)*(1+x^4)) +...+ a(n)*x^n / Product_{k=1..n+1} (1+x^k) +...
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral, Memo)
    a188431 n = a188431_list !! (n-1)
    a188431_list = map
       (\x -> sum [fMemo x i | i <- [a188429 x .. a188430 x]]) [1..] where
       fMemo = memo2 integral integral f
       f _ 1 = 1
       f m i = sum [fMemo (m - i) j |
                    j <- [a188429 (m - i) .. min (a188430 (m - i)) (i - 1)]]
    -- Reinhard Zumkeller, Aug 06 2015
  • Maple
    sums:= proc(s) local i, m;
              m:= max(s[]);
             `if`(m<1, {}, {m, seq([i, i+m][], i=sums(s minus {m}))})
           end:
    a:= proc(n) local b;
          b:= proc(i,s) local si;
                if i=1 then `if`(sums(s)={$1..n}, 1, 0)
              else si:= s union {i};
                   b(i-1, s)+ `if`(max(sums(si)[])>n, 0, b(i-1, si))
                fi
              end; b(n, {1})
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 03 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n or i>n-i+1, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, May 20 2017
  • Mathematica
    Sums[s_] := Sums[s] = With[{m = Max[s]}, If[m < 1, {}, Union @ Flatten @ Join[{m}, Table[{i, i + m}, {i, Sums[s ~Complement~ {m}]}]]]];
    a[n_] := Module[{b}, b[i_, s_] := b[i, s] = Module[{si}, If[i == 1, If[Sums[s] == Range[n], 1, 0], si = s ~Union~ {i}; b[i-1, s] + If[Max[ Sums[si]] > n, 0, b[i - 1, si]]]]; b[n, {1}]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 80}] (* Jean-François Alcover, Apr 12 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Union[Total/@Union[Subsets[#]]]==Range[0,n]&]],{n,30}] (* Gus Wiseman, May 31 2019 *)
  • PARI
    /* As coefficients in g.f. */
    {a(n)=local(A=[1]); for(i=1, n+1, A=concat(A,0); A[#A]=polcoeff(1 - sum(m=1,#A,A[m]*x^m/prod(k=1, m, 1+x^k +x*O(x^#A) )), #A) ); A[n+1]}
    for(n=0, 50, print1(a(n),", ")) /* Paul D. Hanna, Mar 06 2012 */
    

Formula

F(n) = Sum_(i=L(n) .. U(n), F(n,i)), where F(n,i) = Sum_(j=L(n-i) .. min(U(n-i),i-1), F(n-i,j) ) and L(n), U(n) are defined in A188429 and A188430, respectively.
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1+x^k), with a(0)=1. - Paul D. Hanna, Mar 08 2012
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(3/4), where c = 0.03316508... - Vaclav Kotesovec, Oct 21 2019

Extensions

More terms from Alois P. Heinz, Apr 03 2011
a(0)=1 prepended by Alois P. Heinz, May 20 2017

A032153 Number of ways to partition n elements into pie slices of different sizes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 19, 22, 32, 41, 57, 92, 114, 155, 209, 280, 364, 587, 707, 984, 1280, 1737, 2213, 2990, 4390, 5491, 7361, 9650, 12708, 16451, 21567, 27506, 40100, 49201, 65701, 84128, 111278, 140595, 184661, 232356, 300680
Offset: 0

Views

Author

Keywords

Comments

Number of strict necklace compositions of n. A strict necklace composition of n is a finite sequence of distinct positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. In other words, it is a strict composition of n starting with its least part. - Gus Wiseman, May 31 2019

Examples

			From _Gus Wiseman_, May 31 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(9) = 11 ways to slice a pie:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)
            (12)  (13)  (14)  (15)   (16)   (17)   (18)
                        (23)  (24)   (25)   (26)   (27)
                              (123)  (34)   (35)   (36)
                              (132)  (124)  (125)  (45)
                                     (142)  (134)  (126)
                                            (143)  (135)
                                            (152)  (153)
                                                   (162)
                                                   (234)
                                                   (243)
(End)
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    K:= floor(isqrt(1+8*N)/2):
    S:= series(1+add((k-1)!*x^((k^2+k)/2)/mul(1-x^j,j=1..k),k=1..K),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jul 15 2016
    # second Maple program:
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 `if`(n=0, 1, b(n$2, -1)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 12 2020
  • Mathematica
    max=50; s=Sum[(x^(k(k+1)/2-1)*(k-1)!)/QPochhammer[x, x, k], {k, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Jan 19 2016 *)
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],neckQ]],{n,30}] (* Gus Wiseman, May 31 2019 *)
  • PARI
    N=66;  q='q+O('q^N);
    gf=sum(n=1,N, (n-1)!*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf)
    /* Joerg Arndt, Oct 20 2012 */
    
  • PARI
    seq(n)=[subst(serlaplace(p/y),y,1) | p <- Vec(y-1+prod(k=1, n, 1 + x^k*y + O(x*x^n)))] \\ Andrew Howroyd, Sep 13 2018

Formula

"CGK" (necklace, element, unlabeled) transform of 1, 1, 1, 1, ...
G.f.: Sum_{k >= 1} (k-1)! * x^((k^2+k)/2) / (Product_{j=1..k} 1-x^j). - Vladeta Jovovic, Sep 21 2004
a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} (k-1)! * A008289(n,k) for n > 0. - Alois P. Heinz, Aug 07 2020

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 13 2018

A325791 Number of necklace permutations of {1..n} such that every positive integer from 1 to n * (n + 1)/2 is the sum of some circular subsequence.

Original entry on oeis.org

1, 1, 1, 2, 4, 20, 82, 252, 1074, 7912, 39552, 152680, 776094, 5550310, 30026848, 108376910
Offset: 0

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A necklace permutation is a permutation that is either empty or whose first part is the minimum. A circular subsequence is a sequence of consecutive terms where the last and first parts are also considered consecutive. The only circular subsequence of maximum length is the sequence itself, not any rotation of it. For example, the circular subsequences of (1,3,2) are: (), (1), (2), (3), (1,3), (2,1), (3,2), (1,3,2).

Examples

			The a(1) = 1 through a(5) = 20 permutations:
  (1)  (1,2)  (1,2,3)  (1,2,3,4)  (1,2,3,4,5)
              (1,3,2)  (1,3,2,4)  (1,2,3,5,4)
                       (1,4,2,3)  (1,2,4,3,5)
                       (1,4,3,2)  (1,2,4,5,3)
                                  (1,2,5,4,3)
                                  (1,3,2,5,4)
                                  (1,3,4,2,5)
                                  (1,3,4,5,2)
                                  (1,3,5,2,4)
                                  (1,3,5,4,2)
                                  (1,4,2,3,5)
                                  (1,4,2,5,3)
                                  (1,4,3,2,5)
                                  (1,4,5,2,3)
                                  (1,4,5,3,2)
                                  (1,5,2,3,4)
                                  (1,5,2,4,3)
                                  (1,5,3,2,4)
                                  (1,5,3,4,2)
                                  (1,5,4,3,2)
		

Crossrefs

Programs

  • Mathematica
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Permutations[Range[n]],#=={}||First[#]==1&&Range[n*(n+1)/2]==Union[Total/@subalt[#]]&]],{n,0,5}]

Extensions

a(11)-a(15) from Bert Dobbelaere, Nov 01 2020

A325790 Number of permutations of {1..n} such that every positive integer from 1 to n * (n + 1)/2 is the sum of some circular subsequence.

Original entry on oeis.org

1, 1, 2, 6, 16, 100, 492, 1764, 8592, 71208, 395520, 1679480, 9313128, 72154030, 420375872, 1625653650
Offset: 0

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A circular subsequence is a sequence of consecutive non-overlapping terms where the last and first parts are also considered consecutive. The only circular subsequence of maximum length is the sequence itself (not any rotation of it). For example, the circular subsequences of (2,1,3) are: (), (1), (2), (3), (1,3), (2,1), (3,2), (2,1,3).

Examples

			The a(1) = 1 through a(4) = 16 permutations:
  (1)  (1,2)  (1,2,3)  (1,2,3,4)
       (2,1)  (1,3,2)  (1,3,2,4)
              (2,1,3)  (1,4,2,3)
              (2,3,1)  (1,4,3,2)
              (3,1,2)  (2,1,4,3)
              (3,2,1)  (2,3,1,4)
                       (2,3,4,1)
                       (2,4,1,3)
                       (3,1,4,2)
                       (3,2,1,4)
                       (3,2,4,1)
                       (3,4,1,2)
                       (4,1,2,3)
                       (4,1,3,2)
                       (4,2,3,1)
                       (4,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Permutations[Range[n]],Range[n*(n+1)/2]==Union[Total/@subalt[#]]&]],{n,0,5}]
  • PARI
    weigh(p)={my(b=0); for(i=1, #p, my(s=0,j=i); for(k=1, #p, s+=p[j]; if(!bittest(b,s), b=bitor(b,1<Andrew Howroyd, Aug 16 2019

Extensions

a(10)-a(12) from Andrew Howroyd, Aug 18 2019
a(13)-a(15) from Bert Dobbelaere, Nov 01 2020

A325988 Number of covering (or complete) factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

First differs from A072911 at a(64) = 5, A072911(64) = 4.
A covering factorization of n is an orderless factorization of n into factors > 1 such that every divisor of n is the product of some submultiset of the factors.

Examples

			The a(64) = 5 factorizations:
  (2*2*2*2*2*2)
  (2*2*2*2*4)
  (2*2*2*8)
  (2*2*4*4)
  (2*4*8)
The a(96) = 4 factorizations:
  (2*2*2*2*2*3)
  (2*2*2*3*4)
  (2*2*3*8)
  (2*3*4*4)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Union[Times@@@Subsets[#]]==Divisors[n]&]],{n,100}]

Formula

a(2^n) = A126796(n).

A325986 Heinz numbers of complete strict integer partitions.

Original entry on oeis.org

1, 2, 6, 30, 42, 210, 330, 390, 462, 510, 546, 714, 798, 2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7854, 8778, 8970, 9282, 9570, 9690, 10230, 10374, 10626, 11310, 11730, 12090, 12210, 12558, 13398, 13566, 14322, 14430
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

Strict partitions are counted by A000009, while complete partitions are counted by A126796.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
An integer partition of n is complete (A126796, A325781) if every number from 0 to n is the sum of some submultiset of the parts.
The enumeration of these partitions by sum is given by A188431.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      6: {1,2}
     30: {1,2,3}
     42: {1,2,4}
    210: {1,2,3,4}
    330: {1,2,3,5}
    390: {1,2,3,6}
    462: {1,2,4,5}
    510: {1,2,3,7}
    546: {1,2,4,6}
    714: {1,2,4,7}
    798: {1,2,4,8}
   2310: {1,2,3,4,5}
   2730: {1,2,3,4,6}
   3570: {1,2,3,4,7}
   3990: {1,2,3,4,8}
   4290: {1,2,3,5,6}
   4830: {1,2,3,4,9}
   5610: {1,2,3,5,7}
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Select[Range[1000],SquareFreeQ[#]&&Union[hwt/@Divisors[#]]==Range[0,hwt[#]]&]

Formula

Intersection of A005117 (strict partitions) and A325781 (complete partitions).

A325786 Number of complete necklace compositions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 7, 12, 19, 41, 71, 141, 255, 509, 924, 1882, 3395, 6838, 12715, 25233, 47049
Offset: 1

Views

Author

Gus Wiseman, May 22 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. A circular subsequence is a sequence of consecutive terms where the first and last parts are also considered consecutive. A necklace composition of n is complete if every positive integer from 1 to n is the sum of some circular subsequence.

Examples

			The a(1) = 1 through a(8) = 19 necklace compositions:
  (1)  (11)  (12)   (112)   (113)    (123)     (124)      (1124)
             (111)  (1111)  (122)    (132)     (142)      (1133)
                            (1112)   (1113)    (1114)     (1142)
                            (11111)  (1122)    (1123)     (1214)
                                     (1212)    (1132)     (1223)
                                     (11112)   (1213)     (1322)
                                     (111111)  (1222)     (11114)
                                               (11113)    (11123)
                                               (11122)    (11132)
                                               (11212)    (11213)
                                               (111112)   (11222)
                                               (1111111)  (11312)
                                                          (12122)
                                                          (111113)
                                                          (111122)
                                                          (111212)
                                                          (112112)
                                                          (1111112)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&Union[Total/@subalt[#]]==Range[n]&]],{n,15}]

A325787 Number of perfect strict necklace compositions of n.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 22 2019

Keywords

Comments

A strict necklace composition of n is a finite sequence of distinct positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. In other words, it is a strict composition of n starting with its least part. A circular subsequence is a sequence of consecutive terms where the last and first parts are also considered consecutive. A necklace composition of n is perfect if every positive integer from 1 to n is the sum of exactly one distinct circular subsequence. For example, the composition (1,2,6,4) is perfect because it has the following circular subsequences and sums:
1: (1)
2: (2)
3: (1,2)
4: (4)
5: (4,1)
6: (6)
7: (4,1,2)
8: (2,6)
9: (1,2,6)
10: (6,4)
11: (6,4,1)
12: (2,6,4)
13: (1,2,6,4)
a(n) > 0 iff n = A002061(k) = A004136(k) for some k. - Bert Dobbelaere, Nov 11 2020

Examples

			The a(1) = 1 through a(31) = 10 perfect strict necklace compositions (empty columns not shown):
  (1)  (1,2)  (1,2,4)  (1,2,6,4)  (1,3,10,2,5)  (1,10,8,7,2,3)
              (1,4,2)  (1,3,2,7)  (1,5,2,10,3)  (1,13,6,4,5,2)
                       (1,4,6,2)                (1,14,4,2,3,7)
                       (1,7,2,3)                (1,14,5,2,6,3)
                                                (1,2,5,4,6,13)
                                                (1,2,7,4,12,5)
                                                (1,3,2,7,8,10)
                                                (1,3,6,2,5,14)
                                                (1,5,12,4,7,2)
                                                (1,7,3,2,4,14)
From _Bert Dobbelaere_, Nov 11 2020: (Start)
Compositions matching nonzero terms from a(57) to a(273), up to symmetry.
a(57) = 12:
  (1,2,10,19,4,7,9,5)
  (1,3,5,11,2,12,17,6)
  (1,3,8,2,16,7,15,5)
  (1,4,2,10,18,3,11,8)
  (1,4,22,7,3,6,2,12)
  (1,6,12,4,21,3,2,8)
a(73) = 8:
  (1,2,4,8,16,5,18,9,10)
  (1,4,7,6,3,28,2,8,14)
  (1,6,4,24,13,3,2,12,8)
  (1,11,8,6,4,3,2,22,16)
a(91) = 12:
  (1,2,6,18,22,7,5,16,4,10)
  (1,3,9,11,6,8,2,5,28,18)
  (1,4,2,20,8,9,23,10,3,11)
  (1,4,3,10,2,9,14,16,6,26)
  (1,5,4,13,3,8,7,12,2,36)
  (1,6,9,11,29,4,8,2,3,18)
a(133) = 36:
  (1,2,9,8,14,4,43,7,6,10,5,24)
  (1,2,12,31,25,4,9,10,7,11,16,5)
  (1,2,14,4,37,7,8,27,5,6,13,9)
  (1,2,14,12,32,19,6,5,4,18,13,7)
  (1,3,8,9,5,19,23,16,13,2,28,6)
  (1,3,12,34,21,2,8,9,5,6,7,25)
  (1,3,23,24,6,22,10,11,18,2,5,8)
  (1,4,7,3,16,2,6,17,20,9,13,35)
  (1,4,16,3,15,10,12,14,17,33,2,6)
  (1,4,19,20,27,3,6,25,7,8,2,11)
  (1,4,20,3,40,10,9,2,15,16,6,7)
  (1,5,12,21,29,11,3,16,4,22,2,7)
  (1,7,13,12,3,11,5,18,4,2,48,9)
  (1,8,10,5,7,21,4,2,11,3,26,35)
  (1,14,3,2,4,7,21,8,25,10,12,26)
  (1,14,10,20,7,6,3,2,17,4,8,41)
  (1,15,5,3,25,2,7,4,6,12,14,39)
  (1,22,14,20,5,13,8,3,4,2,10,31)
a(183) = 40:
  (1,2,13,7,5,14,34,6,4,33,18,17,21,8)
  (1,2,21,17,11,5,9,4,26,6,47,15,12,7)
  (1,2,28,14,5,6,9,12,48,18,4,13,16,7)
  (1,3,5,6,25,32,23,10,18,2,17,7,22,12)
  (1,3,12,7,20,14,44,6,5,24,2,28,8,9)
  (1,3,24,6,12,14,11,55,7,2,8,5,16,19)
  (1,4,6,31,3,13,2,7,14,12,17,46,8,19)
  (1,4,8,52,3,25,18,2,9,24,6,10,7,14)
  (1,4,20,2,12,3,6,7,33,11,8,10,35,31)
  (1,5,2,24,15,29,14,21,13,4,33,3,9,10)
  (1,5,23,27,42,3,4,11,2,19,12,10,16,8)
  (1,6,8,22,4,5,33,21,3,20,32,16,2,10)
  (1,8,3,10,23,5,56,4,2,14,15,17,7,18)
  (1,8,21,45,6,7,11,17,3,2,10,4,23,25)
  (1,9,5,40,3,4,21,35,16,18,2,6,11,12)
  (1,9,14,26,4,2,11,5,3,12,27,34,7,28)
  (1,9,21,25,3,4,8,5,6,16,2,36,14,33)
  (1,10,22,34,27,12,3,4,2,14,24,5,8,17)
  (1,10,48,9,19,4,8,6,7,17,3,2,34,15)
  (1,12,48,6,2,38,3,22,7,10,11,5,4,14)
a(273) = 12:
  (1,2,4,8,16,32,27,26,11,9,45,13,10,29,5,17,18)
  (1,3,12,10,31,7,27,2,6,5,19,20,62,14,9,28,17)
  (1,7,3,15,33,5,24,68,2,14,6,17,4,9,19,12,34)
  (1,7,12,44,25,41,9,17,4,6,22,33,13,2,3,11,23)
  (1,7,31,2,11,3,9,36,17,4,22,6,18,72,5,10,19)
  (1,21,11,50,39,13,6,4,14,16,25,26,3,2,7,8,27)
(End)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],neckQ[#]&&Sort[Total/@subalt[#]]==Range[n]&]],{n,30}]

Extensions

More terms from Bert Dobbelaere, Nov 11 2020
Showing 1-8 of 8 results.