A108459
Number of labeled partitions of (n,n) into pairs (i,j).
Original entry on oeis.org
1, 1, 5, 52, 855, 19921, 614866, 24040451, 1152972925, 66200911138, 4465023867757, 348383154017581, 31052765897026352, 3128792250765898965, 353179564583216567917, 44320731930172534543092, 6141797839043095806714667, 934330605640859569909566925
Offset: 0
-
b:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
a:= n-> add(coeff(b(n), x, j)*j^n, j=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Dec 02 2023
-
a[n_] := If[n == 0, 1, Sum[k^n*StirlingS2[n, k], {k, 0, n}]];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 10 2024 *)
-
{a(n)=polcoeff(sum(m=0, n, m^m*x^m/prod(k=1, m, 1-m*k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 17 2013
-
{a(n)=n!*polcoeff(sum(m=0, n, (exp(m*x+x*O(x^n))-1)^m/m!), n)} \\ Paul D. Hanna, Sep 17 2013
A326271
E.g.f.: Sum_{n>=0} 3^n * (exp(n*x) - 1)^n / n!.
Original entry on oeis.org
1, 3, 39, 948, 34869, 1757163, 114320118, 9226773993, 897658726215, 103005144933870, 13705015429716807, 2085418048857405375, 358813807291982519184, 69146346672687725451039, 14803634157756603606592167, 3496440993213535696041009924, 905508769623362527769907535857, 255762146004426658313683324505247, 78413243604482526944814375388910526, 25983968388767783226046397856822603645
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 39*x^2/2! + 948*x^3/3! + 34869*x^4/4! + 1757163*x^5/5! + 114320118*x^6/6! + 9226773993*x^7/7! + 897658726215*x^8/8! + 103005144933870*x^9/9! + ...
such that
A(x) = 1 + 3*(exp(x) - 1) + 3^2*(exp(2*x) - 1)^2/2! + 3^3*(exp(3*x) - 1)^3/3! + 3^4*(exp(4*x) - 1)^4/4! + 3^5*(exp(5*x) - 1)^5/5! + 3^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-3) + 3*exp(x)*exp(-3*exp(x)) + 3^2*exp(4*x)*exp(-3*exp(2*x))/2! + 3^3*exp(9*x)*exp(-3*exp(3*x))/3! + 3^4*exp(16*x)*exp(-3*exp(4*x))/4! + 3^5*exp(25*x)*exp(-3*exp(5*x))/5! + 3^6*exp(36*x)*exp(-3*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 3*x + 39*x^2 + 948*x^3 + 34869*x^4 + 1757163*x^5 + 114320118*x^6 + 9226773993*x^7 + 897658726215*x^8 + 103005144933870*x^9 + ...
such that
B(x) = 1 + 3*x/(1-x) + 3^2*2^2*x^2/((1-2*x)*(1-4*x)) + 3^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 3^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 3^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
-
{a(n) = sum(k=0, n, 3^k * k^n * stirling(n, k, 2) )}
for(n=0, 30, print1(a(n), ", "))
-
/* E.g.f.: Sum_{n>=0} 3^n * (exp(n*x) - 1)^n / n! */
{a(n) = n! * polcoeff(sum(m=0, n, 3^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* O.g.f.: Sum_{n>=0} 3^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
{a(n) = polcoeff(sum(m=0, n, 3^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
A326288
E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.
Original entry on oeis.org
1, 4, 68, 2116, 98436, 6217924, 503491204, 50282169284, 6023071906180, 847321700204740, 137695169475601540, 25505309294030757316, 5326002105122774427524, 1242268006104279981404868, 321107726934189274515747460, 91359880704866957348006879172, 28441686041231472428045000672644, 9637951929231839144943126955386052, 3538621024404268912313596289954242692, 1401869934089183216934147248975602680260
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 68*x^2/2! + 2116*x^3/3! + 98436*x^4/4! + 6217924*x^5/5! + 503491204*x^6/6! + 50282169284*x^7/7! + 6023071906180*x^8/8! + 847321700204740*x^9/9! + ...
such that
A(x) = 1 + 4*(exp(x) - 1) + 4^2*(exp(2*x) - 1)^2/2! + 4^3*(exp(3*x) - 1)^3/3! + 4^4*(exp(4*x) - 1)^4/4! + 4^5*(exp(5*x) - 1)^5/5! + 4^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-4) + 4*exp(x)*exp(-4*exp(x)) + 4^2*exp(4*x)*exp(-4*exp(2*x))/2! + 4^3*exp(9*x)*exp(-4*exp(3*x))/3! + 4^4*exp(16*x)*exp(-4*exp(4*x))/4! + 4^5*exp(25*x)*exp(-4*exp(5*x))/5! + 4^6*exp(36*x)*exp(-4*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 4*x + 68*x^2 + 2116*x^3 + 98436*x^4 + 6217924*x^5 + 503491204*x^6 + 50282169284*x^7 + 6023071906180*x^8 + 847321700204740*x^9 + ...
such that
B(x) = 1 + 4*x/(1-x) + 4^2*2^2*x^2/((1-2*x)*(1-4*x)) + 4^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 4^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
-
{a(n) = sum(k=0, n, 4^k * k^n * stirling(n, k, 2) )}
for(n=0, 30, print1(a(n), ", "))
-
/* E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n! */
{a(n) = n! * polcoeff(sum(m=0, n, 4^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* O.g.f.: Sum_{n>=0} 4^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
{a(n) = polcoeff(sum(m=0, n, 4^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments