A108459
Number of labeled partitions of (n,n) into pairs (i,j).
Original entry on oeis.org
1, 1, 5, 52, 855, 19921, 614866, 24040451, 1152972925, 66200911138, 4465023867757, 348383154017581, 31052765897026352, 3128792250765898965, 353179564583216567917, 44320731930172534543092, 6141797839043095806714667, 934330605640859569909566925
Offset: 0
-
b:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
a:= n-> add(coeff(b(n), x, j)*j^n, j=0..n):
seq(a(n), n=0..21); # Alois P. Heinz, Dec 02 2023
-
a[n_] := If[n == 0, 1, Sum[k^n*StirlingS2[n, k], {k, 0, n}]];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 10 2024 *)
-
{a(n)=polcoeff(sum(m=0, n, m^m*x^m/prod(k=1, m, 1-m*k*x +x*O(x^n))), n)} \\ Paul D. Hanna, Sep 17 2013
-
{a(n)=n!*polcoeff(sum(m=0, n, (exp(m*x+x*O(x^n))-1)^m/m!), n)} \\ Paul D. Hanna, Sep 17 2013
A326270
E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n!.
Original entry on oeis.org
1, 2, 18, 314, 8434, 314362, 15278642, 928696442, 68509258098, 5995762219514, 611538502747826, 71656036268121978, 9532232740451770866, 1425414297318661354746, 237588200534263288095538, 43821269448954050939558522, 8887255081413035850889914994, 1970841722610600810208914571258, 475544555000142351430865220032434, 124299766720856839788225909600114042, 35056463298676734373530025799446104818
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 314*x^3/3! + 8434*x^4/4! + 314362*x^5/5! + 15278642*x^6/6! + 928696442*x^7/7! + 68509258098*x^8/8! + 5995762219514*x^9/9! + 611538502747826*x^10/10! + ...
such that
A(x) = 1 + 2*(exp(x) - 1) + 2^2*(exp(2*x) - 1)^2/2! + 2^3*(exp(3*x) - 1)^3/3! + 2^4*(exp(4*x) - 1)^4/4! + 2^5*(exp(5*x) - 1)^5/5! + 2^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-2) + 2*exp(x)*exp(-2*exp(x)) + 2^2*exp(4*x)*exp(-2*exp(2*x))/2! + 2^3*exp(9*x)*exp(-2*exp(3*x))/3! + 2^4*exp(16*x)*exp(-2*exp(4*x))/4! + 2^5*exp(25*x)*exp(-2*exp(5*x))/5! + 2^6*exp(36*x)*exp(-2*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 2*x + 18*x^2 + 314*x^3 + 8434*x^4 + 314362*x^5 + 15278642*x^6 + 928696442*x^7 + 68509258098*x^8 + 5995762219514*x^9 + ...
such that
B(x) = 1 + 2*x/(1-x) + 2^2*2^2*x^2/((1-2*x)*(1-4*x)) + 2^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 2^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 2^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n! = Sum_{n>=0} 2^n * exp(n^2*x) * exp( -2*exp(n*x) ) / n!.
(1) At x = -1, the following sums are equal
S1 = Sum_{n>=0} (-2)^n * (1 - exp(-n))^n / n!,
S1 = Sum_{n>=0} 2^n * exp(-n^2) * exp( -2*exp(-n) ) / n!,
where S1 = 0.51596189603321982013621912500044621350106513780391377129738...
(2) At x = -2, the following sums are equal
S2 = Sum_{n>=0} (-2)^n * (1 - exp(-2*n))^n / n!,
S2 = Sum_{n>=0} 2^n * exp(-2*n^2) * exp( -2*exp(-2*n) ) / n!,
where S2 = 0.34246794778612083304129071190905516612972983097016819355092...
(3) At x = -log(2), the following sums are equal
S3 = Sum_{n>=0} 2^(-n*(n-1)) * (2^n - 1)^n * (-1)^n / n!,
S3 = Sum_{n>=0} 2^(-n*(n-1)) * exp( -1/2^(n-1) ) / n!,
where S3 = 0.58106816860114387883649557314841837351794236167582918403231...
-
Flatten[{1, Table[Sum[2^k * k^n * StirlingS2[n, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 09 2019 *)
-
{a(n) = sum(k=0,n, 2^k * k^n * stirling(n,k,2) )}
for(n=0,30,print1(a(n),", "))
-
/* E.g.f.: Sum_{n>=0} 2^n * (exp(n*x) - 1)^n / n! */
{a(n) = n! * polcoeff(sum(m=0, n, 2^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
for(n=0,30,print1(a(n),", "))
-
/* O.g.f.: Sum_{n>=0} 2^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
{a(n) = polcoeff(sum(m=0, n, 2^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
A326288
E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.
Original entry on oeis.org
1, 4, 68, 2116, 98436, 6217924, 503491204, 50282169284, 6023071906180, 847321700204740, 137695169475601540, 25505309294030757316, 5326002105122774427524, 1242268006104279981404868, 321107726934189274515747460, 91359880704866957348006879172, 28441686041231472428045000672644, 9637951929231839144943126955386052, 3538621024404268912313596289954242692, 1401869934089183216934147248975602680260
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 68*x^2/2! + 2116*x^3/3! + 98436*x^4/4! + 6217924*x^5/5! + 503491204*x^6/6! + 50282169284*x^7/7! + 6023071906180*x^8/8! + 847321700204740*x^9/9! + ...
such that
A(x) = 1 + 4*(exp(x) - 1) + 4^2*(exp(2*x) - 1)^2/2! + 4^3*(exp(3*x) - 1)^3/3! + 4^4*(exp(4*x) - 1)^4/4! + 4^5*(exp(5*x) - 1)^5/5! + 4^6*(exp(6*x) - 1)^6/6! + ...
also
A(x) = exp(-4) + 4*exp(x)*exp(-4*exp(x)) + 4^2*exp(4*x)*exp(-4*exp(2*x))/2! + 4^3*exp(9*x)*exp(-4*exp(3*x))/3! + 4^4*exp(16*x)*exp(-4*exp(4*x))/4! + 4^5*exp(25*x)*exp(-4*exp(5*x))/5! + 4^6*exp(36*x)*exp(-4*exp(6*x))/6! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 4*x + 68*x^2 + 2116*x^3 + 98436*x^4 + 6217924*x^5 + 503491204*x^6 + 50282169284*x^7 + 6023071906180*x^8 + 847321700204740*x^9 + ...
such that
B(x) = 1 + 4*x/(1-x) + 4^2*2^2*x^2/((1-2*x)*(1-4*x)) + 4^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 4^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
-
{a(n) = sum(k=0, n, 4^k * k^n * stirling(n, k, 2) )}
for(n=0, 30, print1(a(n), ", "))
-
/* E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n! */
{a(n) = n! * polcoeff(sum(m=0, n, 4^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* O.g.f.: Sum_{n>=0} 4^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
{a(n) = polcoeff(sum(m=0, n, 4^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments