A335067
Numbers k where records occur for sigma(k+1)/sigma(k), where sigma(k) is the sum of divisors of k (A000203).
Original entry on oeis.org
1, 179, 239, 359, 719, 839, 1259, 3359, 5039, 10079, 25199, 27719, 50399, 55439, 110879, 166319, 360359, 665279, 831599, 1081079, 1441439, 2162159, 3603599, 4324319, 12972959, 21621599, 43243199, 61261199, 73513439, 122522399, 205405199, 245044799, 410810399
Offset: 1
The values of sigma(k+1)/sigma(k) for the first terms are 3, 3.033..., 3.1, 3.25, 3.358..., ...
- Roy E. DeMeo, Jr., Problem 6107, Advanced Problems, The American Mathematical Monthly, Vol. 83, No. 7 (1976), p. 573, The Closure of sigma(n+1)/sigma(n), solution by Harold N. Shapiro, ibid., Vol. 85, No. 4 (1978), pp. 287-289.
-
rm = 0; s1 = 1; seq = {}; Do[s2 = DivisorSigma[1,n]; If[(r = s2/s1) > rm, rm = r; AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq
A362081
Numbers k achieving record abundance (sigma(k) > 2*k) via a residue-based measure M(k) (see Comments), analogous to superabundant numbers A004394.
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 30, 36, 72, 120, 360, 420, 840, 1680, 2520, 4032, 5040, 10080, 25200, 32760, 65520, 98280, 194040, 196560, 388080, 942480, 1801800, 3160080, 3603600, 6320160, 12640320, 24504480, 53721360, 61981920, 73513440, 115315200, 122522400, 189909720, 192099600, 214885440
Offset: 1
The abundance measure is initially negative, becoming positive for k > 30. Initial measures with factorizations from the Mathematica program:
1 -0.64493406684822643647 {{1,1}}
2 -0.46740110027233965471 {{2,1}}
4 -0.36233516712056609118 {{2,2}}
6 -0.25726923396879252765 {{2,1},{3,1}}
12 -0.10873810118013850374 {{2,2},{3,1}}
24 -0.10334250226949712257 {{2,3},{3,1}}
30 -0.096478036147509765322 {{2,1},{3,1},{5,1}}
36 0.068719763307810925260 {{2,2},{3,2}}
72 0.12657322670640173542 {{2,3},{3,2}}
Cf.
A004394,
A004490,
A002201,
A005100,
A005101,
A004125,
A024916,
A000290,
A120444,
A235796,
A000396,
A000079.
-
Clear[max, Rp, R, seqtable, M];
max = -1; Rp = 0; seqtable = {};
Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20];
If[M > max, max = M; Print[k, " ", max, " ", FactorInteger[k]];
AppendTo[seqtable, k]];
Rp = R, {k, 1, 1000000000}];
Print[seqtable]
-
M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n;
lista(nn) = my(m=-oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm > m, listput(list, n); m = mm);); Vec(list); \\ Michel Marcus, Apr 21 2023
A362082
Numbers k achieving record deficiency via a residue-based measure, M(k) = (k+1)*(1 - zeta(2)/2) - 1 - ( Sum_{j=1..k} k mod j )/k.
Original entry on oeis.org
1, 5, 11, 23, 47, 59, 167, 179, 359, 503, 719, 1439, 5039, 6719, 7559, 15119, 20159, 52919, 75599, 83159, 166319, 415799, 720719, 831599, 1081079, 2162159, 4324319, 5266799, 7900199, 10533599, 18345599, 28274399, 41081039, 136936799, 205405199, 410810399
Offset: 1
First few terms with their M(k) measure and factorizations as generated by the Mathematica program:
1 -0.64493406684822643647 {{1,1}}
5 -0.73480220054467930942 {{5,1}}
11 -0.86960440108935861883 {{11,1}}
23 -1.0000783673961085420 {{23,1}}
47 -1.0528856894638174541 {{47,1}}
59 -1.1107338698535727552 {{59,1}}
167 -1.1984137110594038972 {{167,1}}
179 -1.2619431113124463216 {{179,1}}
359 -1.3499704727921791778 {{359,1}}
503 -1.3722914063892448936 {{503,1}}
719 -1.4363475145965658088 {{719,1}}
Cf.
A004490,
A002201,
A005100,
A005101,
A004125,
A024916,
A000290,
A120444,
A235796,
A000396,
A000079.
-
Clear[min, Rp, R, seqtable, M]; min = 1; Rp = 0; seqtable = {};
Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20];
If[M < min, min = M; Print[k, " ", min, " ", FactorInteger[k]];
AppendTo[seqtable, k]];
Rp = R, {k, 1, 1000000000}];
Print[seqtable]
-
M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n;
lista(nn) = my(m=+oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm < m, listput(list, n); m = mm);); Vec(list); \\ Michel Marcus, Apr 21 2023
A362083
Numbers k such that, via a residue based measure M(k) (see Comments), k is deficient, k+1 is abundant, and abs(M(k)) + abs(M(k+1)) reaches a new maximum.
Original entry on oeis.org
11, 17, 19, 47, 53, 103, 347, 349, 557, 1663, 1679, 2519, 5039, 10079, 15119, 25199, 27719, 55439, 110879, 166319, 277199, 332639, 554399, 665279, 720719, 1441439, 2162159, 3603599, 4324319, 7207199, 8648639, 10810799, 21621599, 36756719, 61261199, 73513439, 122522399, 147026879
Offset: 1
The first few terms with measure sums and factorizations generated by the Mathematica program:
0.90610439514731535319 35 {{5,1},{7,1}} 36 {{2,2},{3,2}}
1.1735781643159997761 59 {{59,1}} 60 {{2,2},{3,1},{5,1}}
1.3642976724582397229 119 {{7,1},{17,1}} 120 {{2,3},{3,1},{5,1}}
1.3954100615479538209 179 {{179,1}} 180 {{2,2},{3,2},{5,1}}
1.4600817810807682323 239 {{239,1}} 240 {{2,4},{3,1},{5,1}}
1.6088158511317518390 359 {{359,1}} 360 {{2,3},{3,2},{5,1}}
1.7153941935887132383 719 {{719,1}} 720 {{2,4},{3,2},{5,1}}
1.7851979872921589879 839 {{839,1}} 840 {{2,3},{3,1},{5,1},{7,1}}
Cf.
A335067,
A326393,
A004490,
A002201,
A326393,
A005100,
A005101,
A004125,
A024916,
A000290,
A120444,
A235796,
A000396,
A000079.
-
Clear[max, Rp, R, seqtable, Mp, M];max = -1; Rp = 0; Mp = -0.644934066; seqtable = {};
Do[R = Rp + 2 k - 1 - DivisorSigma[1, k];
M = N[(k)*(1 - Zeta[2]/2) - 1 - R/k, 20];
If[DivisorSigma[1, k - 1] < 2 (k - 1) && DivisorSigma[1, k] > 2 k &&
Abs[Mp] + Abs[M] > max, max = Abs[Mp] + Abs[M];
Print[max, " ", k - 1, " ", FactorInteger[k - 1], " ", k,
" ", FactorInteger[k]]; AppendTo[seqtable, {k - 1, k}]]; Rp = R;
Mp = M, {k, 2, 1000000000}]; seq = Flatten[seqtable]; Table[seq[[2 j - 1]], {j, 1, Length[seq]/2}]
A335068
Numbers k where records occur for sigma(k)/sigma(k+1), where sigma(k) is the sum of divisors of k (A000203).
Original entry on oeis.org
1, 2, 4, 6, 12, 30, 36, 60, 180, 240, 420, 840, 1680, 2520, 5040, 7560, 12600, 15120, 30240, 55440, 110880, 221760, 332640, 665280, 720720, 1441440, 2882880, 3603600, 4324320, 10810800, 24504480, 36756720, 41081040, 43243200, 64864800, 73513440, 122522400, 183783600
Offset: 1
The values of sigma(k)/sigma(k+1) for the first terms are 0.333..., 0.75, 1.166..., 1.5, 2, ...
- Roy E. DeMeo, Jr., Problem 6107, Advanced Problems, The American Mathematical Monthly, Vol. 83, No. 7 (1976), p. 573, The Closure of sigma(n+1)/sigma(n), solution by Harold N. Shapiro, ibid., Vol. 85, No. 4 (1978), pp. 287-289.
-
rm = 0; s1 = 1; seq = {}; Do[s2 = DivisorSigma[1,n]; If[(r = s1/s2) > rm, rm = r; AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq
With[{nn=721000},DeleteDuplicates[Thread[{Range[nn-1],#[[1]]/#[[2]]&/@Partition[ DivisorSigma[ 1,Range[nn]],2,1]}],GreaterEqual[#1[[2]],#2[[2]]]&]][[;;,1]] (* The program generates the first 25 terms of the sequence. *) (* Harvey P. Dale, Jan 12 2024 *)
Showing 1-5 of 5 results.
Comments