A340827 Number of strict integer partitions of n into divisors of n whose length also divides n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 18, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 17, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) partitions for n = 6, 12, 24, 90, 84: 6 12 24 90 84 3,2,1 6,4,2 12,8,4 45,30,15 42,28,14 6,3,2,1 12,6,4,2 45,30,9,5,1 42,21,14,7 12,8,3,1 45,18,15,9,3 42,28,12,2 8,6,4,3,2,1 45,30,10,3,2 42,28,6,4,3,1 45,18,15,10,2 42,28,7,4,2,1 45,30,6,5,3,1 42,14,12,7,6,3 45,30,9,3,2,1 42,21,12,4,3,2 45,15,10,9,6,5 42,21,12,6,2,1 45,18,10,9,5,3 42,21,14,4,2,1 45,18,10,9,6,2 28,21,14,12,6,3 45,18,15,6,5,1 28,21,14,12,7,2 45,18,15,9,2,1 42,21,7,6,4,3,1 30,18,15,10,6,5,3,2,1 42,14,12,7,4,3,2 42,14,12,7,6,2,1 28,21,14,12,4,3,2 28,21,14,12,6,2,1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 2519 terms from Antti Karttunen)
- Antti Karttunen, Scheme program for computing this sequence
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
A102627 = strict partitions whose length divides sum.
A326850 = strict partitions whose maximum part divides sum.
A326851 = strict partitions w/ length and max dividing sum.
A340828 = strict partitions w/ length divisible by max.
A340829 = strict partitions w/ Heinz number divisible by sum.
A340830 = strict partitions w/ parts divisible by length.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],UnsameQ@@#&&Divisible[n,Length[#]]&]],{n,30}]
-
PARI
A340827(n, divsleft=List(divisors(n)), rest=n, len=0) = if(rest<=0, !rest && !(n%len), my(s=0, d); forstep(i=#divsleft, 1, -1, d = divsleft[i]; listpop(divsleft,i); if(rest>=d, s += A340827(n, divsleft, rest-d, 1+len))); (s)); \\ Antti Karttunen, Feb 22 2023
-
Scheme
;; See the Links-section. - Antti Karttunen, Feb 22 2023
Extensions
Data section extended up to a(105) by Antti Karttunen, Feb 22 2023
Comments