A202213
Number of permutations of [n] avoiding the consecutive pattern 45321.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 708, 4914, 38976, 347765, 3447712, 37598286, 447294144, 5764747515, 80011430240, 1189835682714, 18873422539776, 318085061976105, 5676223254661760, 106919460527212950, 2119973556022047744, 44136046410218669055, 962630898723772565760
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 1..40 from Ray Chandler)
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes, 2011.
- Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see Theorem 3.2 (p. 116) with m = a = 3 and u = 0.
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
- Wikipedia, Falling and rising factorials.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(b(u+j-1, o-j, `if`(u+j-10, -1, `if`(t=-1, -2, 0)))), j=1..u)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..40); # Alois P. Heinz, Nov 19 2013
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u+j-1, o-j, If[u+j-1 < j, 0, j]], {j, 1, o}] + If[t == -2, 0, Sum[b[u-j, o+j-1, If[j0, -1, If[t == -1, -2, 0]]]], {j, 1, u}]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 12 2015, after Alois P. Heinz *)
A111004
Number of permutations avoiding a consecutive 132 pattern.
Original entry on oeis.org
1, 1, 2, 5, 16, 63, 296, 1623, 10176, 71793, 562848, 4853949, 45664896, 465403791, 5108121216, 60069714207, 753492215808, 10042248398625, 141712039383552, 2110880441637045, 33097631526180864, 544903371859138335, 9398216812334008320, 169463659008217238055
Offset: 0
The first 3 entries of 2431 form a consecutive 132 pattern.
The 4!-a(4) = 8 permutations on [4] that DO contain a consecutive 132 pattern are 1243, 1324, 1423, 1432, 2143, 2431, 3142, 4132. Also, for example, 1342 contains a scattered 1-3-2 pattern but not a consecutive 132.
- Ray Chandler, Table of n, a(n) for n = 0..200
- A. Baxter, B. Nakamura, and D. Zeilberger. Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005.
- S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125.
- M. E. Jones and J. B. Remmel, Pattern matching in the cycle structures of permutations, Pure Math. Appl. (PU.M.A.) 22 (2011), 173-208.
-
Clear[a]; a[0, 0] = a[0] = 1; a[n_, 0]/;n>=1 := 0; a[n_, k_]/;k>n := 0; a[n_, k_]/;1<=k<=n<=2 := 1; a[n_, k_]/;n>=3 := a[n, k] = Sum[a[n-1, j], {j, k-1}] + (n-k)Sum[a[n-2, j], {j, k-1}] + Sum[(n-m) Binomial[m-k-1, ell-3]a[n-ell, j], {ell, 3, n-k+1}, {m, k+ell-2, n-1}, {j, 0, m-ell+1}]; a[n_]/;n>=1 := a[n] = Sum[a[n, k], {k, n}]; Table[a[n], {n, 0, 15}]
(* or, faster *) ExpGfToList[f_, n_, x_] := CoefficientList[Normal[Series[f, {x, 0, n}]] /. x^(pwr_) -> pwr!*x^pwr, x]; ExpGfToList[1/( 1-(Pi/2)^(1/2)*Erf[z/2^(1/2)] ), 25, z]
A117226
Number of permutations of [n] avoiding the consecutive pattern 1243.
Original entry on oeis.org
1, 1, 2, 6, 23, 110, 630, 4204, 32054, 274914, 2619692, 27459344, 313990182, 3889585408, 51888955808, 741668212080, 11307669002720, 183174676857608, 3141820432768752, 56882461258572976, 1084056190235653304, 21692744773505849952, 454758269790599361968
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..60 from Ray Chandler)
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes, 2011.
- Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125; see p. 120.
- Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005.
- Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006), 138-155.
- Steven Finch, Pattern-Avoiding Permutations. [Archived copy]
- Steven Finch, Pattern-Avoiding Permutations. [Cached copy, with permission]
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
- Wikipedia, Falling and rising factorials.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, 0), j=`if`(t<0, -t, 1)..u)+
add(b(u+j-1, o-j, `if`(t=0, j, -j)), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 07 2013
-
A[x_]:=Integrate[AiryAi[ -t],{t,0,x}]; B[x_]:=Integrate[AiryBi[ -t],{t,0,x}];
c=-3^(2/3)*Gamma[2/3]/2; d=-3^(1/6)*Gamma[2/3]/2;
a[n_]:=SeriesCoefficient[1/(c*A[x]+d*B[x]+1),{x,0,n}]*n!; Table[a[n],{n,0,10}] (* fixed by Vaclav Kotesovec, Aug 23 2014 *)
(* constant d: *) 1/x/.FindRoot[3^(2/3)*Gamma[2/3]/2 * Integrate[AiryAi[-t],{t,0,x}] + 3^(1/6)*Gamma[2/3]/2 * Integrate[AiryBi[-t],{t,0,x}]==1,{x,1},WorkingPrecision->50] (* Vaclav Kotesovec, Aug 23 2014 *)
A329070
Array read by ascending antidiagonals: T(n, k) = (k*n)!/(k^n*(1/k)_n) with (n >= 0 and k >= 1), where (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 8, 6, 1, 1, 48, 180, 24, 1, 1, 384, 12960, 8064, 120, 1, 1, 3840, 1710720, 10644480, 604800, 720, 1, 1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1, 1, 645120, 109930867200, 244635697152000, 2303884477440000, 70355755008000, 10897286400, 40320, 1
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
1, 1, 1, 1, 1, 1, ...
1, 2, 6, 24, 120, 720, ...
1, 8, 180, 8064, 604800, 68428800, ...
1, 48, 12960, 10644480, 19813248000, 70355755008000, ...
...
Triangular array S(m,s) = T(m-s, s+1) (with rows m >= 0 and columns s >= 0):
1;
1, 1;
1, 2, 1;
1, 8, 6, 1;
1, 48, 180, 24, 1;
1, 384, 12960, 8064, 120, 1;
1, 3840, 1710720, 10644480, 604800, 720, 1;
1, 46080, 359251200, 35765452800, 19813248000, 68428800, 5040, 1;
...
-
A := (n, k) -> `if`(k=0, 1, (GAMMA(1/k)*GAMMA(k*n+1))/(GAMMA(n+1/k)*k^n)):
seq(seq(A(n-k-1, k), k=1..n-1), n=0..10); # Peter Luschny, Nov 04 2019
Showing 1-4 of 4 results.
Comments