cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224268 Decimal expansion of Product_{n>=1} (1 - 1/(4n+1)^2).

Original entry on oeis.org

9, 2, 7, 0, 3, 7, 3, 3, 8, 6, 5, 0, 6, 8, 5, 9, 5, 9, 2, 1, 6, 9, 2, 5, 1, 7, 3, 5, 9, 7, 6, 3, 0, 0, 2, 3, 1, 0, 8, 7, 9, 9, 4, 1, 1, 7, 6, 0, 8, 8, 3, 4, 5, 2, 7, 9, 2, 9, 6, 4, 0, 2, 2, 5, 2, 8, 0, 1, 0, 8, 8, 8, 4, 1, 9, 0, 5, 9, 9, 8, 9, 1, 7, 8, 6, 3, 5
Offset: 0

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Examples

			0.9270373386506859592169251735976300231087994117608834527929640225280...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.

Crossrefs

Cf. product(1-1/(4n+r)^2, n>=1): A096427 (r=-1), A112628 (r=0), A179587-1 (r=2).

Programs

  • Mathematica
    RealDigits[N[Product[1 - 1/(4 n + 1)^2, {n, 1, Infinity}], 90]][[1]] (* or, by the formula: *) RealDigits[Gamma[1/4]^2/(8 Sqrt[Pi]), 10, 90][[1]]
  • PARI
    prodnumrat(1 - 1/(4*n+1)^2, 1) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals Gamma(1/4)^2/(8*sqrt(Pi)) = L/(4*sqrt(2)), where L is the Lemniscate constant (A064853).
From Peter Bala, Feb 26 2019: (Start)
C = (Pi/4)*( Sum_{n = -inf..inf} exp(-Pi*n^2) )^2.
C = (-1)^m*2^(2*m+1)/Catalan(m) * Product_{n >= 1} ( 1 - (4*m + 3)^2/(4*n + 1)^2 ), for m = 0,1,2,....
C = Integral_{x = 0..1} 1/sqrt(1 + x^4) dx.
C = (1/sqrt(2))*Integral_{x = 0..1} 1/sqrt(1 - x^4) dx.
C = (3/2)*Integral_{x = 0..1} sqrt(1 + x^4) dx - sqrt(2)/2.
C = (1/8)*Integral_{x = 0..1} 1/(x - x^2)^(3/4) dx.
C = Sum_{n >= 0} binomial(-1/2,n)/(4*n + 1) = Sum_{n >= 0} binomial(2*n,n)/4^n * 1/(4*n + 1).
C = (1/2)*Sum_{n >= 0} (-1)^n*binomial(-3/4,n)/(4*n + 1).
Continued fraction: 1 - 1/(5 + 20/(1 + 30/(3 + ... + (4*n)*(4*n + 1)/(1 + (4*n + 1)*(4*n + 2)/(3 + ... ))))).
C = A085565/sqrt(2). C = Pi/(4*A096427). (End)
Equals A093341/2 = A327996^2. - Hugo Pfoertner, Oct 31 2024

A327995 Decimal expansion of Gamma(3/4)/Pi^(1/4).

Original entry on oeis.org

9, 2, 0, 4, 4, 1, 7, 8, 7, 8, 3, 5, 5, 9, 0, 9, 8, 3, 9, 3, 4, 9, 1, 7, 1, 3, 0, 7, 4, 9, 9, 9, 0, 9, 8, 1, 2, 2, 9, 4, 9, 8, 9, 2, 0, 2, 0, 9, 1, 5, 1, 3, 4, 2, 2, 5, 3, 3, 0, 0, 0, 5, 8, 9, 1, 8, 1, 5, 3, 5, 0, 3, 7, 4, 1, 5, 1, 3, 1, 3, 4, 3, 5, 5, 4, 9
Offset: 0

Views

Author

Peter Luschny, Oct 24 2019

Keywords

Comments

The function df(x) = 2^(x/2)*(2/Pi)^(sin(Pi*x/2)^2/2)*Gamma(x/2+1) interpolates the double factorials A006882 and extends them analytically. df(-1/2) is the given constant. Extending also the notation this can be written as (-1/2)!! = (-1/4)!/Pi^(1/4).

Examples

			0.92044178783559098393491713074999098122949892...
		

Crossrefs

Programs

  • Maple
    Digits := 100: GAMMA(3/4)/Pi^(1/4)*10^86:
    ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    RealDigits[Gamma[3/4]/Surd[Pi,4],10,120][[1]] (* Harvey P. Dale, Jun 13 2020 *)
  • PARI
    gamma(3/4)/Pi^(1/4) \\ Michel Marcus, Oct 24 2019

Formula

Equals (-1/4)!/Pi^(1/4).
From Amiram Eldar, Feb 04 2024: (Start)
Equals Pi^(3/4)*sqrt(2)/Gamma(1/4).
Equals Product_{k>=0} ((4*k+1)*(4*k+4)/((4*k+2)*(4*k+3)))^A010060(k) (Allouche et al., 2019). (End)

A319332 Decimal expansion of 1/2 + Sum_{n>0} exp(-Pi*n^2).

Original entry on oeis.org

5, 4, 3, 2, 1, 7, 4, 0, 5, 6, 0, 6, 6, 5, 4, 0, 0, 7, 2, 8, 7, 6, 5, 8, 0, 6, 0, 7, 5, 5, 1, 1, 1, 7, 2, 8, 5, 3, 5, 1, 0, 2, 8, 5, 3, 6, 2, 2, 6, 0, 9, 4, 4, 2, 9, 6, 0, 3, 9, 5, 1, 5, 7, 9, 9, 0, 9, 2, 8, 3, 6, 6, 1, 3, 3, 5, 5, 4, 8, 9, 7, 9, 8, 0, 2, 8, 0, 8
Offset: 0

Views

Author

Hugo Pfoertner, Sep 18 2018

Keywords

Comments

A part of Ramanujan's question 629 in the Journal of the Indian Mathematical Society (VII, 40) asked "... deduce the following: 1/2 + Sum_{n>=1} exp(-Pi*n^2) = sqrt(5*sqrt(5)-10) * (1/2 + Sum_{n>=1} exp(-5*Pi*n^2))."

Examples

			0.54321740560665400728765806075511172853510285362260944296039515799...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^(1/4)/(2*Gamma[3/4]), 10, 120][[1]] (* Amiram Eldar, May 30 2023 *)
  • PARI
    1/2+suminf(n=1,exp(-Pi*n*n))
    
  • PARI
    sqrt(5*sqrt(5)-10)*(1/2+suminf(n=1,exp(-5*Pi*n*n)))

Formula

Equals Pi^(1/4)/(2*Gamma(3/4)). - Peter Luschny, Jun 11 2020
From Amiram Eldar, May 30 2023: (Start)
Equals Gamma(1/4)/(2*sqrt(2)*Pi^(3/4)).
Equals A327996 / sqrt(Pi). (End)
Showing 1-3 of 3 results.