cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A327969 The length of a shortest path from n to zero when using the transitions x -> A003415(x) and x -> A276086(x), or -1 if no zero can ever be reached from n.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 3, 2, 6, 4, 3, 2, 5, 2, 5, 6, 6, 2, 5, 2, 7, 4, 3, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 07 2019

Keywords

Comments

The terms of this sequence are currently known only up to n=23, with the value of a(24) still being uncertain. For the tentative values of the later terms, see sequence A328324 which gives upper bounds for these terms, many of which are very likely also exact values for them.
As A051903(A003415(n)) >= A051903(n)-1, it means that it takes always at least A051903(n) steps to a prime if iterating solely with A003415.
Some known values and upper bounds from n=24 onward:
a(24) <= 11.
a(25) = 4.
a(26) = 7.
a(27) <= 22.
a(33) = 4.
a(39) = 4.
a(40) = 5.
a(42) = 3.
a(44) <= 10.
a(45) = 5.
a(46) = 5.
a(48) = 9.
a(49) = 6.
a(50) = 6.
a(55) = 7.
a(74) = 5.
a(77) = 6.
a(80) <= 18.
a(111) = 6.
a(112) = 8.
a(125) <= 9.
a(240) = 7.
a(625) <= 10.
a(875) = 8.
From Antti Karttunen, Feb 20 2022: (Start)
a(2556) <= 20.
a(5005) <= 19.
What is the value of a(128), and is A328324(128) well-defined?
When I created this sequence, I conjectured that by applying two simple arithmetic operations "arithmetic derivative" (A003415) and "primorial base exp-function" (A276086) in some combination, and starting from any positive integer, we could always reach zero (via a prime and 1).
At the first sight it seems almost certain that the conjecture holds, as it is always possible at every step to choose from two options (which very rarely meet, see A351088), leading to an exponentially growing search tree, and also because A276086 always jumps out of any dead-end path with p^p-factors (dead-end from the arithmetic derivative's point of view). However, it should be realized that one can reach the terms of either A157037 or A327978 with a single step of A003415 only from squarefree numbers (or respectively, cubefree numbers that are not multiples of 4, see A328234), and in general, because A003415 decreases the maximal exponent of the prime factorization (A051903) at most by one, if the maximal exponent in the prime factorization of n is large, there is a correspondingly long path to traverse if we take only A003415-steps in the iteration, and any step could always lead with certain probability to a p^p-number. Note that the antiderivatives of primorials with a square factor seem quite rare, see A351029.
And although taking a A276086-step will always land us to a p^p-free number (which a priori is not in the obvious dead-end path of A003415, although of course it might eventually lead to one), it (in most cases) also increases the magnitude of number considerably, that tends to make the escape even harder. Particularly, in the majority of cases A276086 increases the maximal exponent (which in the preimage is A328114, "maximal digit value used when n is written in primorial base"), so there will be even a longer journey down to squarefree numbers when using A003415. See the sequences A351067 and A351071 for the diminishing ratios suggesting rapidly diminishing chances of successfully reaching zero from larger terms of A276086. Also, the asymptotic density of A276156 is zero, even though A351073 may contain a few larger values.
On the other hand, if we could prove that by (for example) continuing upwards with any p^p-path of A003415 we could eventually reach with a near certainty a region of numbers with low values of A328114 (i.e., numbers with smallish digits in primorial base, like A276156), then the situation might change (see also A351089). However, a few empirical runs seemed to indicate otherwise.
For all of the above reasons, I now conjecture that there are natural numbers from which it is not possible to reach zero with any combination of steps. For example 128 or 5^5 = 3125.
(End)

Examples

			Let -A> stand for an application of A003415 and -B> for an application of A276086, then, we have for example:
a(8) = 6 as we have 8 -A>  12 -B>  25 -A> 10 -A>  7 -A> 1 -A> 0, six transitions in total (and there are no shorter paths).
a(15) = 6 as we have 15 -B> 150 -A> 185 -A> 42 -A> 41 -A> 1 -A> 0, six transitions in total (and there are no shorter paths).
a(20) = 7, as 20 -B> 375 -A> 350 -A> 365 -A> 78 -A> 71 -A> 1 -A> 0, and there are no shorter paths.
For n=112, we know that a(112) cannot be larger than eight, as A328099^(8)(112) = 0, so we have a path of length 8 as 112 -A> 240 -B> 77 -A> 18 -A> 21 -A> 10 -A> 7 -A> 1 -A> 0. Checking all 32 combinations of the paths of lengths of 5 starting from 112 shows that none of them or their prefixes ends with a prime, thus there cannot be any shorter path, and indeed a(112) = 8.
a(24) <= 11 as A328099^(11)(24) = 0, i.e., we have 24 -A> 44 -A> 48 -A> 112 -A> 240 -B> 77 -A> 18 -A> 21 -A> 10 -A> 7 -A> 1 -A> 0. On the other hand, 24 -B> 625 -B> 17794411250 -A> 41620434625 -A> 58507928150 -A> 86090357185 -A> 54113940517 -A> 19982203325 -A> 12038411230 -A> 8426887871 -A> 1 -A> 0, thus offering another path of length 11.
		

Crossrefs

Cf. A328324 (a sequence giving upper bounds, computed with restricted search space).
Sequences for whose terms k, value a(k) has a guaranteed constant upper bound: A000040, A002110, A143293, A157037, A192192, A327978, A328232, A328233, A328239, A328240, A328243, A328249, A328313.
Sequences for whose terms k, it is guaranteed that a(k) has finite value > 0, even if not bound by a constant: A099308, A328116.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327969(n,searchlim=0) = if(!n,n,my(xs=Set([n]),newxs,a,b,u); for(k=1,oo, print("n=", n, " k=", k, " xs=", xs); newxs=Set([]); for(i=1,#xs,u = xs[i]; a = A003415(u); if(0==a, return(k)); if(isprime(a), return(k+2)); b = A276086(u); if(isprime(b), return(k+1+(u>2))); newxs = setunion([a],newxs); if(!searchlim || (b<=searchlim),newxs = setunion([b],newxs))); xs = newxs));

Formula

a(0) = 0, a(p^p) = 1 + a(A276086(p^p)) for primes p, and for other numbers, a(n) = 1+min(a(A003415(n)), a(A276086(n))).
a(p) = 2 for all primes p.
For all n, a(n) <= A328324(n).
Let A stand the transition x -> A003415(x), and B stand for x -> A276086(x). The following sequences give some constant upper limits, because it is guaranteed that the combination given in brackets (the leftmost A or B is applied first) will always lead to a prime:
For all n, a(A157037(n)) = 3. [A]
For n > 1, a(A002110(n)) = 3. [B]
For all n, a(A192192(n)) <= 4. [AA]
For all n, a(A327978(n)) = 4. [AB]
For all n, a(A328233(n)) <= 4. [BA]
For all n, a(A143293(n)) <= 4. [BB]
For all n, a(A328239(n)) <= 5. [AAA]
For all n, a(A328240(n)) <= 5. [BAA]
For all n, a(A328243(n)) <= 5. [ABB]
For all n, a(A328313(n)) <= 5. [BBB]
For all n, a(A328249(n)) <= 6. [BAAA]
For all k in A046099, a(k) >= 4, and if A328114(k) > 1, then certainly a(k) > 4.

A157037 Numbers with prime arithmetic derivative A003415.

Original entry on oeis.org

6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 22 2009

Keywords

Comments

Equivalently, solutions to n'' = 1, since n' = 1 iff n is prime. Twice the lesser of the twin primes, 2*A001359 = A108605, are a subsequence. - M. F. Hasler, Apr 07 2015
All terms are squarefree, because if there would be a prime p whose square p^2 would divide n, then A003415(n) = (A003415(p^2) * (n/p^2)) + (p^2 * A003415(n/p^2)) = p*[(2 * (n/p^2)) + (p * A003415(n/p^2))], which certainly is not a prime. - Antti Karttunen, Oct 10 2019

Examples

			A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
		

Crossrefs

Cf. A189441 (primes produced by these numbers), A241859.
Cf. A192192, A328239 (numbers whose 2nd and numbers whose 3rd arithmetic derivative is prime).
Cf. A108605, A256673 (subsequences).
Subsequence of following sequences: A005117, A099308, A235991, A328234 (A328393), A328244, A328321.

Programs

  • Haskell
    a157037 n = a157037_list !! (n-1)
    a157037_list = filter ((== 1) . a010051' . a003415) [1..]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
    
  • Python
    from itertools import count, islice
    from sympy import isprime, factorint
    def A157037_gen(): # generator of terms
        return filter(lambda n:isprime(sum(n*e//p for p,e in factorint(n).items())), count(2))
    A157037_list = list(islice(A157037_gen(),20)) # Chai Wah Wu, Jun 23 2022

Formula

A010051(A003415(a(n))) = 1; A068346(a(n)) = 1; A099306(a(n)) = 0.
A003415(a(n)) = A328385(a(n)) = A241859(n); A327969(a(n)) = 3. - Antti Karttunen, Oct 19 2019

A192192 Numbers whose second arithmetic derivative (A068346) is prime; Polynomial-like numbers of degree 3.

Original entry on oeis.org

9, 21, 25, 57, 85, 93, 121, 126, 145, 161, 185, 201, 206, 209, 221, 237, 242, 253, 265, 289, 305, 315, 326, 333, 341, 365, 369, 377, 381, 413, 417, 437, 453, 458, 490, 495, 497, 517, 537, 542, 545, 565, 566, 575, 578, 597, 605, 633, 637, 638, 649, 666, 685
Offset: 1

Views

Author

Vladimir Shevelev, Jun 25 2011

Keywords

Comments

The fourth A003415-iteration of a(n) is the first to be 0.

Crossrefs

Cf. A157037, A328239 (the first and third derivative is prime).
Subsequence of following sequences: A328234, A328244, A328246.

Programs

  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[1000], dn[dn[dn[#]]] == 1&] (* T. D. Noe, Mar 07 2013 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA192192(n) = isprime(A003415(A003415(n))); \\ Antti Karttunen, Oct 19 2019

Formula

For all n, A327969(a(n)) <= 4. - Antti Karttunen, Oct 19 2019

Extensions

More terms from Olivier Gérard, Jul 04 2011
New primary definition added to the name by Antti Karttunen, Oct 19 2019

A328233 Numbers n such that the arithmetic derivative of A276086(n) is prime.

Original entry on oeis.org

3, 7, 9, 33, 37, 38, 211, 213, 218, 241, 242, 246, 247, 249, 2313, 2317, 2319, 2341, 2342, 2346, 2521, 2523, 2526, 2529, 2550, 2553, 2559, 30031, 30038, 30039, 30061, 30062, 30063, 30066, 30069, 30242, 30243, 30249, 30270, 30278, 30279, 32341, 32342, 32347, 32370, 32373, 32377, 32379, 32551, 32553, 510513, 510518, 510519
Offset: 1

Views

Author

Antti Karttunen, Oct 09 2019

Keywords

Comments

Numbers n for which A327860(n) = A003415(A276086(n)) is a prime.
Numbers n such that A276086(n) is in A157037.
Terms come in distinct "batches", where in each batch they are "slightly more" than the nearest primorial (A002110) below. This is explained by the fact that for A276086(n) to be a squarefree (which is the necessary condition for A157037), n's primorial base expansion (A049345) must not contain digits larger than 1. Thus this is a subsequence of A276156.
Numbers n such that A327860(A276086(n)) = A003415(A276087(n)) is a prime [A276087(n) is in A157037] are much rarer: 2, 4, 30, 212, 421, 30045, 510511, 512820, 9729723, ...
For all terms k in this sequence, A327969(k) <= 4, and particularly A327969(k) = 2 when k is a prime. Otherwise, when k is not a prime, but A003415(k) is, A327969(k) = 3, while for other cases (when k is neither prime nor in A157037), we have A327969(k) = 4.

Crossrefs

Programs

  • PARI
    A327860(n) = { my(m=1, i=0, s=0, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), my(e=((n%nextpr)/pr)); m *= (prime(i)^e); s += (e / prime(i)); n-=(n%nextpr)); pr=nextpr); (s*m); };
    isA328233(n) = isprime(A327860(n));

A328242 Numbers k such that A003415(A276086(k)) is a squarefree number, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 210, 211, 212, 213, 215, 217, 218, 219, 220, 221, 223, 225, 226, 227, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256, 257, 270, 273, 274, 275, 276, 277
Offset: 1

Views

Author

Antti Karttunen, Oct 10 2019

Keywords

Comments

Numbers n such that A276086(n) is either in A328234 or in A000040 (i.e., it is a prime, in which case n itself is a primorial, A002110).

Crossrefs

Positions of 1's in A370130. Subsequence of A370132.
Cf. A328241 (complement).
Cf. A328233, A328240 (subsequences).

Programs

  • PARI
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    isA328242(n) = issquarefree(A327860(n));

A328249 Numbers k such that the third arithmetic derivative of A276086(k) is prime.

Original entry on oeis.org

5, 15, 21, 31, 43, 79, 91, 98, 104, 106, 223, 229, 231, 254, 255, 289, 291, 301, 305, 423, 453, 456, 487, 670, 674, 677, 692, 702, 730, 736, 2343, 2378, 2380, 2400, 2409, 2534, 2537, 2543, 2552, 2562, 2585, 2602, 2618, 2629, 2767, 2804, 2821, 2831, 2839, 2942, 2943, 2957, 2962, 2963, 2974, 4621, 4669, 4672, 4687, 4717, 4841, 4844
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Comments

Numbers k such that A003415(A003415(A327860(k))) = A099306(A276086(k)) is a prime.
Numbers k such that A276086(k) is in A328239.
For all n, A327969(a(n)) <= 6. This is sharp for example with a(7) = 91.

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A327860(n) = { my(m=1, i=0, s=0, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), my(e=((n%nextpr)/pr)); m *= (prime(i)^e); s += (e / prime(i)); n-=(n%nextpr)); pr=nextpr); (s*m); };
    isA328249(n) = isprime(A003415(A003415(A327860(n))));

A370131 a(n) = A068346(A276086(n)), where A068346 is the second arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 0, 0, 1, 5, 10, 0, 1, 12, 1, 16, 44, 7, 39, 16, 42, 608, 391, 55, 135, 365, 455, 1120, 2990, 800, 1100, 1400, 5425, 12575, 21025, 0, 6, 7, 1, 20, 103, 16, 1, 1, 32, 271, 320, 24, 78, 572, 459, 1031, 2887, 635, 1670, 1155, 3335, 19540, 22130, 4225, 7700, 18675, 28100, 68900, 155425, 9, 18, 20, 54, 704, 631, 24, 251
Offset: 0

Views

Author

Antti Karttunen, Feb 10 2024

Keywords

Crossrefs

Cf. A002110 (positions of 0's after the initial zero), A328233 (positions of 1's), A328240 (positions of primes), A369651 (= a(A143293(n-1)), for n >= 1).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
    A370131(n) = A003415(A327860(n));

Formula

a(n) = A068346(A276086(n)) = A003415(A327860(n)).
Showing 1-7 of 7 results.