A242107
Reduced division polynomials associated with elliptic curve y^2 + x*y = x^3 - x^2 - x + 1 and multiples of point (0, 1).
Original entry on oeis.org
0, 1, 1, 1, 1, -1, 2, -3, 1, -5, -7, -13, -16, 11, -57, 131, -113, 389, 670, 2311, 3983, 9, 23647, -81511, 140576, -484247, -833503, -5751815, -14871471, -17124617, -147165662, 710017141, -2273917871, 9644648819, 11396432249, 204006839259, 808162720720
Offset: 0
a(9) = -5 and the point multiple 9*(0, 1) = (-14/(-5)^2, -169/(-5)^3).
-
I:=[1,1,1,1,-1]; [0] cat [n le 5 select I[n] else (-Self(n-1)* Self(n-4) + Self(n-2)*Self(n-3))/Self(n-5): n in [1..30]]; // G. C. Greubel, Aug 05 2018
-
Join[{0}, RecurrenceTable[{a[n] == (-a[n-1]*a[n-4] + a[n-2]*a[n-3])/a[n-5], a[0] == 0, a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == -1}, a, {n, 0, 50}]] (* G. C. Greubel, Aug 05 2018 *)
-
{a(n) = my(s=1, v); if( n<0, s=-1; n=-n); s^(n+1) * if( n, v = vector(n, k, 1); if( n<6, (-1)^(n>4), v[5] = -1; for(k=6, n, v[k] = (-v[k-1] * v[k-4] + v[k-2] * v[k-3]) / v[k-5]); v[n]))};
-
{a(n) = sign(n) * subst(elldivpol(ellinit([1, -1, 0, -1, 1]), abs(n)), x, 0) / (if(n%2, 1, 2) * (-1)^((n-1)\2) * 2^(n^2\4))}; /* Michael Somos, Feb 23 2020 */
-
{a(n) = my(E=ellinit([1, -1, 0, -1, 1]), z=ellpointtoz(E, [0, 1])); (-1)^(n\2) * round(ellsigma(E, n*z) / (ellsigma(E, z)^n^2 * 2^(n^2\4))) }; /* Michael Somos, Feb 25 2020 */
-
from gmpy2 import divexact
A242107 = [0,1,1,1,1,-1]
for n in range(6,30):
A242107.append(int(divexact(-A242107[n-1]*A242107[n-4]+A242107[n-2]*A242107[n-3],A242107[n-5])))
print(A242107) # Chai Wah Wu, Aug 15 2014
A377441
Square array T(n, k) read by rising antidiagonals. Row n has the ordinary generating function (-(n*x^3-(n+1)*x^2+x) + sqrt((n*x^3-(n+1)*x^2+x)^2 - 4*(x^3-x^2)*((n+1)*x^2-x)))/(2*(x^3-x^2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 6, 14, 1, 1, 2, 7, 21, 42, 1, 1, 2, 8, 30, 78, 132, 1, 1, 2, 9, 41, 136, 299, 429, 1, 1, 2, 10, 54, 222, 630, 1172, 1430, 1, 1, 2, 11, 69, 342, 1221, 2959, 4677, 4862, 1, 1, 2, 12, 86, 502, 2192, 6774, 14058, 18947, 16796, 1, 1, 2, 13, 105, 708, 3687, 14129, 37853, 67472, 77746, 58786, 1, 1, 2, 14, 126, 966, 5874, 27184
Offset: 0
The array begins:
[0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108
[1] 1, 1, 2, 6, 21, 78, 299, 1172, 4677, ... = A254316
[2] 1, 1, 2, 7, 30, 136, 630, 2959, 14058, ...
[3] 1, 1, 2, 8, 41, 222, 1221, 6774, 37853, ...
[4] 1, 1, 2, 9, 54, 342, 2192, 14129, 91494, ...
[5] 1, 1, 2, 10, 69, 502, 3687, 27184, 201045, ...
Cf.
A000012 (Hankel transform of row 0),
A006720 (Hankel transform of row 1).
Cf.
A330025 (Hankel transform of row -1),
A328380 (Hankel transform of row -2).
A152172
a(n) is the number of Dyck paths of semilength n without height of peaks 0 (mod 3) and height of valleys 1 (mod 3).
Original entry on oeis.org
1, 1, 2, 3, 6, 12, 26, 59, 138, 332, 814, 2028, 5118, 13054, 33598, 87143, 227542, 597640, 1577866, 4185108, 11146570, 29798682, 79932298, 215072896, 580327122, 1569942098, 4257254850, 11569980794, 31508150890, 85968266198, 234975421554, 643317390627
Offset: 0
Jun Ma (majun(AT)math.sinica.edu.tw), Nov 27 2008
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
`if`(t=0 and irem(y, 3)=0, 0, b(x-1, y-1, 1))+
`if`(t=1 and irem(y, 3)=1, 0, b(x-1, y+1, 0))))
end:
a:= n-> b(2*n, 0$2):
seq(a(n), n=0..35); # Alois P. Heinz, Oct 23 2024
-
CoefficientList[Series[(1+x-2x^2-Sqrt[1-2x-3x^2+4x^4])/(2(1-x)x), {x, 0, 30}], x] (* Harvey P. Dale, Apr 10 2012 *)
-
{a(n) = my(A, E=ellinit([1, -1, 0, -1, 1]),b=1,c=1,v=[1]); if( n<0, 0, A = O(x); for(k=1, n, v=concat(v,(1/b)*(1/c)); b=(1/b)*(1/c); c=(1-ellmul(E,[0,1],2*k+1)[1])/b; v=concat(v,c) ); for(k=1, #v,A = 1 /(1 - v[#v+1-k]*x*A));polcoeff(A, n))}; \\ Thomas Scheuerle, Oct 23 2024
-
{a(n) = my(A,v=[1,1,-1,-1,3]); if( n<0, 0, A = O(x); for(k=1, n+1, v=concat(v,(1/v[#v])*(1/v[#v-1])); v=concat(v,(v[#v-2]*v[#v-1]-2)/(v[#v-4]*v[#v-3]*v[#v-2]^2*v[#v-1]^2*v[#v]))); for(k=1, #v,A = 1 /(1 - v[#v+1-k]*x*A));polcoeff(A, n))} \\ Thomas Scheuerle, Oct 23 2024
A377442
Square array read by rising antidiagonals: T(n, k) = A377441(-n, k), an extension of A377441 into the domain of negative n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 4, 14, 1, 1, 2, 3, 9, 42, 1, 1, 2, 2, 6, 22, 132, 1, 1, 2, 1, 5, 12, 57, 429, 1, 1, 2, 0, 6, 6, 26, 154, 1430, 1, 1, 2, -1, 9, -2, 15, 59, 429, 4862, 1, 1, 2, -2, 14, -18, 24, 24, 138, 1223, 16796, 1, 1, 2, -3, 21, -48, 77, -23, 53, 332, 3550, 58786, 1, 1, 2, -4, 30, -98, 222, -226, 102, 107, 814, 10455, 208012, 1, 1, 2
Offset: 0
The array begins:
[ 0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108
[-1] 1, 1, 2, 4, 9, 22, 57, 154, 429, ... = A105633
[-2] 1, 1, 2, 3, 6, 12, 26, 59, 138, ... = A152172
[-3] 1, 1, 2, 2, 5, 6, 15, 24, 53, ...
[-4] 1, 1, 2, 1, 6, -2, 24, -23, 102, ...
[-5] 1, 1, 2, 0, 9, -18, 77, -226, 765, ...
[-6] 1, 1, 2, -1, 14, -48, 222, -921, 3914, ...
[-7] 1, 1, 2, -2, 21, -98, 531, -2756, 14373, ...
Row index written as [m] is corresponding to A377441(m, k).
Cf.
A377441 (The main entry for this sequence).
Cf.
A000012 (Hankel transform of row 0),
A006720 (Hankel transform of row 1).
Cf.
A330025 (Hankel transform of row -1),
A328380 (Hankel transform of row -2).
Showing 1-4 of 4 results.
Comments