A055265
a(n) is the smallest positive integer not already in the sequence such that a(n)+a(n-1) is prime, starting with a(1)=1.
Original entry on oeis.org
1, 2, 3, 4, 7, 6, 5, 8, 9, 10, 13, 16, 15, 14, 17, 12, 11, 18, 19, 22, 21, 20, 23, 24, 29, 30, 31, 28, 25, 34, 27, 26, 33, 38, 35, 32, 39, 40, 43, 36, 37, 42, 41, 48, 49, 52, 45, 44, 53, 50, 47, 54, 55, 46, 51, 56, 57, 70, 61, 66, 65, 62, 69, 58, 73, 64, 63, 68, 59, 72, 67, 60
Offset: 1
a(5) = 7 because 1, 2, 3 and 4 have already been used and neither 4 + 5 = 9 nor 4 + 6 = 10 are prime while 4 + 7 = 11 is prime.
Cf.
A086527 (the primes a(n)+a(n-1)).
Cf.
A070942 (n's such that a(1..n) is a permutation of (1..n)). -
Zak Seidov, Oct 19 2011
See
A282695 for deviation from identity sequence.
A073659 is a version where the partial sums must be primes.
-
import Data.List (delete)
a055265 n = a055265_list !! (n-1)
a055265_list = 1 : f 1 [2..] where
f x vs = g vs where
g (w:ws) = if a010051 (x + w) == 1
then w : f w (delete w vs) else g ws
-- Reinhard Zumkeller, Feb 14 2013
-
A055265 := proc(n)
local a,i,known ;
option remember;
if n =1 then
1;
else
for a from 1 do
known := false;
for i from 1 to n-1 do
if procname(i) = a then
known := true;
break;
end if;
end do:
if not known and isprime(procname(n-1)+a) then
return a;
end if;
end do:
end if;
end proc:
seq(A055265(n),n=1..100) ; # R. J. Mathar, Feb 25 2017
-
f[s_List] := Block[{k = 1, a = s[[ -1]]}, While[ MemberQ[s, k] || ! PrimeQ[a + k], k++ ]; Append[s, k]]; Nest[f, {1}, 71] (* Robert G. Wilson v, May 27 2009 *)
q=2000; a={1}; z=Range[2,2*q]; While[Length[z]>q-1, k=1; While[!PrimeQ[z[[k]]+Last[a]], k++]; AppendTo[a,z[[k]]]; z=Delete[z,k]]; Print[a] (*200 times faster*) (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
-
v=[1];n=1;while(n<50,if(isprime(v[#v]+n)&&!vecsearch(vecsort(v),n), v=concat(v,n);n=0);n++);v \\ Derek Orr, Jun 01 2015
-
U=-a=1; vector(100,k, k=valuation(1+U+=1<M. F. Hasler, Feb 11 2020
A329450
Lexicographically earliest sequence of distinct nonnegative integers such that neither a(n) + a(n+1) nor a(n) + a(n+2) is prime for any n.
Original entry on oeis.org
0, 1, 8, 7, 2, 13, 12, 3, 6, 9, 15, 5, 10, 4, 11, 14, 16, 18, 17, 21, 19, 23, 25, 26, 20, 22, 24, 27, 28, 29, 34, 31, 32, 33, 30, 35, 39, 37, 38, 40, 36, 41, 44, 43, 42, 45, 46, 47, 48, 51, 54, 57, 58, 53, 52, 59, 56, 49, 50, 55, 60, 61, 62, 63, 66, 67, 68, 65, 64, 69, 71, 72, 70, 73, 74, 79, 76
Offset: 0
After the smallest possible initial terms, a(0) = 0, a(1) = 1, the next term must be neither a prime nor a prime - 1. The smallest possibility is a(2) = 8.
The next term must not be a prime - 1 nor a prime - 8, which excludes 2, 4, 6 on one hand, and 3 and 5 on the other hand. The smallest possibility is a(3) = 7.
- Eric Angelini, Prime sums from neighbouring terms, personal blog "Cinquante signes" (and post to the SeqFan list), Nov. 11, 2019.
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of html file, with permission]
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of pdf file, with permission]
- M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019
Cf.
A329333 (always one odd prime among a(n+i)+a(n+j), 0 <= i < j <= 2).
Cf.
A329405 (analog for positive integers).
-
Nest[Block[{k = 2}, While[Nand[FreeQ[#, k], ! PrimeQ[#[[-1]] + k], ! PrimeQ[#[[-2]] + k]], k++]; Append[#, k]] &, {0, 1}, 89] (* Michael De Vlieger, Nov 15 2019 *)
-
A329450(n,show=0,o=0,p=o,U=[])={for(n=o,n-1, show&&print1(p","); U=setunion(U,[p]); while(#U>1&&U[1]==U[2]-1, U=U[^1]); for(k=U[1]+1,oo, setsearch(U,k) || isprime(o+k) || isprime(p+k) || [o=p, p=k, break]));p} \\ Optional args: show=1: print a(o..n-1); o=1: start with a(1) = 1 (A329405). See the wiki page for more general code returning a vector: S(n,0,3) = A329450(0..n-1).
A329449
For any n >= 0, exactly four sums a(n+i) + a(n+j) are prime, for 0 <= i < j <= 3: lexicographically earliest such sequence of distinct nonnegative integers.
Original entry on oeis.org
0, 1, 2, 3, 4, 9, 8, 15, 14, 5, 26, 17, 6, 11, 12, 7, 30, 29, 24, 13, 18, 19, 10, 43, 28, 31, 16, 25, 22, 21, 46, 37, 52, 27, 34, 45, 44, 39, 58, 69, 20, 51, 32, 41, 38, 35, 48, 23, 36, 53, 50, 47, 54, 59, 42, 55, 72, 65, 84, 67, 114, 79, 60, 49, 78, 71, 102, 61, 66, 91, 40, 73, 76, 33, 64, 63, 68
Offset: 0
We start with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, the smallest possibilities which do not lead to a contradiction. Indeed, the four sums 0 + 2, 0 + 3, 1 + 2 and 2 + 3 are prime.
Now we have 2 prime sums using {1, 2, 3}, so the next term must give two more prime when added to these. We find that a(4) = 4 is the smallest possible choice, with 1 + 4 = 5 and 3 + 4 = 7.
Then there are again 2 primes among the pairwise sums using {2, 3, 4}, so the next term must again produce two more prime sums. We find that a(5) = 9 is the smallest possibility, with 2 + 9 = 11 and 4 + 9 = 13.
a(10^4) = 9834 and all numbers up to 9834 occurred by then.
a(10^5) = 99840 and all numbers below 99777 occurred by then.
a(10^6) = 1000144 and all numbers below 999402 occurred by then.
- Eric Angelini, Prime sums from neighbouring terms, personal blog "Cinquante signes" (and post to the SeqFan list), Nov. 11, 2019.
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of html file, with permission]
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of pdf file, with permission]
- M. F. Hasler, Prime sums from neighboring terms, OEIS Wiki, Nov. 23, 2019.
Other sequences with N primes among pairwise sums of M consecutive terms, starting with a(o) = o, sorted by decreasing N and lowest possible M:
A329581 (N=11, M=8, o=0),
A329580 (N=10, M=8, o=0),
A329569 (N=9, M=6, o=0),
A329568 (N=9, M=6, o=1),
A329425 (N=6, M=5, o=0),
A329449 (N=4, M=4, o=0),
A329411 (N=2, M=3, o=0 or 1),
A128280 (N=1, M=2, o=0),
A055265 (N=1, M=2, o=1),
A055266 (N=0, M=2; o=1),
A253074 (N=0, M=2; o=0).
-
A329449(n, show=0, o=0, N=4, M=3, p=[], U, u=o)={for(n=o, n-1, if(show>0, print1(o", "), show<0, listput(L,o)); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); for(k=u, oo, bittest(U, k-u) || min(c-#[0|p<-p, isprime(p+k)], #p>=M) || [o=k, break]));show&&print([u]); o} \\ Optional args: show=1: print a(o..n-1), show=-1: append a(o..n-1) to the global list L, in both cases print [least unused number] at the end; o=1: start with a(1)=1; N, M: get N primes using M+1 consecutive terms.
A128280
a(n) is the least number not occurring earlier such that a(n)+a(n-1) is prime, a(0) = 0.
Original entry on oeis.org
0, 2, 1, 4, 3, 8, 5, 6, 7, 10, 9, 14, 15, 16, 13, 18, 11, 12, 17, 20, 21, 22, 19, 24, 23, 30, 29, 32, 27, 26, 33, 28, 25, 34, 37, 36, 31, 40, 39, 44, 35, 38, 41, 42, 47, 50, 51, 46, 43, 54, 49, 48, 53, 56, 45, 52, 55, 58, 69, 62, 65, 66, 61, 70, 57, 74, 63, 64, 67, 60, 71, 68, 59
Offset: 0
A329425
For all n >= 0, six among (a(n+i) + a(n+j), 0 <= i < j < 5) are prime: lexicographically first such sequence of distinct nonnegative integers.
Original entry on oeis.org
0, 1, 2, 3, 4, 9, 8, 10, 33, 14, 93, 20, 17, 23, 44, 6, 24, 35, 65, 5, 18, 32, 11, 12, 29, 30, 7, 31, 72, 16, 22, 25, 37, 15, 46, 64, 43, 28, 85, 19, 54, 13, 88, 34, 49, 39, 40, 27, 100, 57, 26, 52, 111, 21, 38, 45, 62, 41, 51, 56, 47, 116, 50, 81, 63, 68, 59, 170, 69, 71
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..10000
- Éric Angelini, Prime sums from neighbouring terms, SeqFan list, and personal blog "Cinquante signes", Nov. 11, 2019.
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of html file, with permission]
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of pdf file, with permission]
- M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019.
-
R:= 0,1,2,3,4:
S:= {R}:
for i from 1 to 100 do
for x from 5 do
if member(x,S) then next fi;
n1:= nops(select(isprime,[seq(seq(R[i+j]+R[i+k],j=1..k-1),k=1..4)]));
if nops(select(isprime,[seq(R[i+j]+x,j=1..4)]))+n1 = 6 then
R:= R, x; S:= S union {x}; break
fi
od od:
R; # Robert Israel, Dec 29 2022
-
A329425_upto(N) = S(N,6,5,0) \\ see the wiki page for the function S().
A329411
Among the pairwise sums of any three consecutive terms there are exactly two prime sums: lexicographically earliest such sequence of distinct positive numbers.
Original entry on oeis.org
1, 2, 3, 4, 7, 6, 5, 8, 9, 10, 13, 16, 15, 14, 17, 12, 11, 18, 19, 22, 21, 20, 23, 24, 29, 30, 31, 28, 25, 33, 34, 26, 27, 32, 35, 36, 37, 42, 41, 38, 45, 44, 39, 40, 43, 46, 51, 50, 47, 53, 54, 48, 49, 52, 55, 57, 82, 56, 75, 62, 64, 87, 63, 76, 61, 66, 65, 71, 86, 60, 77, 67, 72, 59, 68, 69, 58, 70
Offset: 1
a(1) = 1 is the smallest possible choice; there's no restriction on the first term.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (out of the required two) with the pair {1, 2}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Since 2 + 3 = 5 we now have our two prime sums with the triplet {1, 2, 3}.
a(4) = 4 as 4 is the smallest available integer not leading to a contradiction. Since 3 + 4 = 7 we now have our two prime sums with the triplet {2, 3, 4}: they are 2 + 3 = 5 and 3 + 4 = 7.
a(5) = 7 because 5 or 6 would lead to a contradiction: indeed, both the triplets {3, 4, 5} and {3, 4, 6} will produce only one prime sum (instead of two). With a(5) = 7 we have the triplet {3, 4, 7} and the two prime sums we were looking for: 3 + 4 = 7 and 4 + 7 = 11.
And so on.
- Jean-Marc Falcoz, Table of n, a(n) for n = 1..10000
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of html file, with permission]
- Eric Angelini, Prime sums from neighbouring terms [Cached copy of pdf file, with permission]
- M. F. Hasler, Prime sums from neighboring terms, OEIS wiki, Nov. 23, 2019
Cf.
A055265 (sum of two consecutive terms is always prime: differs from a(30) on).
Cf.
A329412 ..
A329416 (exactly 2 prime sums using 4, ..., 10 consecutive terms).
Cf.
A055266 (no prime sum among 2 consecutive terms),
A329405 (no prime among the pairwise sums of 3 consecutive terms).
-
a[1]=1;a[2]=2;a[n_]:=a[n]=(k=1;While[Length@Select[Plus@@@Subsets[{a[n-1],a[n-2],++k},{2}],PrimeQ]!=2||MemberQ[Array[a,n-1],k]];k);Array[a,100] (* Giorgos Kalogeropoulos, May 09 2021 *)
-
A329411(n,show=0,o=1,N=2,M=2,p=[],U,u=o)={for(n=o,n-1, show>0&& print1(o", "); show<0&& listput(L,o); U+=1<<(o-u); U>>=-u+u+=valuation(U+1,2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2,#p, sum(j=1,i-1, isprime(p[i]+p[j])))); for(k=u,oo, bittest(U,k-u)|| min(c-#[0|p<-p, isprime(p+k)], #p>=M) ||[o=k,break]));show&&print([u]);o} \\ Optional args: show=1: print a(o..n-1), show=-1: append a(o..n-1) to the (global) list L, in both cases print [least unused number] at the end; o=0: start with a(o)=o; N, M: find N primes using M+1 consecutive terms. - M. F. Hasler, Nov 16 2019
A329454
There are exactly three primes among a(n+i) + a(n+j), 0 <= i < j <= 3, for any n >= 0: lexicographically earliest such sequence of distinct nonnegative integers.
Original entry on oeis.org
0, 1, 2, 4, 5, 3, 8, 6, 11, 7, 10, 12, 9, 19, 22, 14, 15, 16, 13, 18, 21, 40, 43, 20, 27, 46, 17, 26, 33, 24, 35, 38, 32, 23, 29, 30, 31, 28, 25, 34, 36, 39, 37, 64, 42, 41, 67, 47, 60, 49, 48, 52, 45, 55, 44, 58, 69, 51, 50, 62, 53, 77, 54, 56, 83, 57, 66, 74, 65, 61, 102, 70, 71, 79, 78, 59, 68, 63, 72, 95, 86, 81, 76, 73, 75, 82, 106
Offset: 0
We start with a(0) = 0, a(1) = 1, a(2) = 2, the smallest possibilities which do not lead to a contradiction.
Now there are already 2 primes, 0 + 2 and 1 + 2, among the pairwise sums, so the next term must generate exactly one further prime. It appears that a(3) = 4 is the smallest possible choice.
Then there are again two primes among the pairwise sums using {1, 2, 4}, and the next term must again produce one additional prime as sum with these. We find that a(4) = 5 is the smallest possibility.
Cf.
A329452 (2 primes among a(n+i)+a(n+j), 0 <= i < j < 4),
A329453 (2 primes among a(n+i)+a(n+j), 0 <= i < j < 5).
Cf.
A329333 (1 odd prime among a(n+i)+a(n+j), 0 <= i < j < 3),
A329450 (no primes among a(n+i)+a(n+j), 0 <= i < j < 3).
Cf.
A329405 ff: variants defined for positive integers.
-
Nest[Block[{k = 3}, While[Nand[FreeQ[#, k], Count[Subsets[Append[Take[#, -3], k], {2}], ?(PrimeQ@ Total@ # &)] == 3], k++]; Append[#, k]] &, {0, 1, 2}, 84] (* _Michael De Vlieger, Nov 15 2019 *)
-
A329454(n, show=0, o=0, N=3, M=3, p=[], U, u=o)={for(n=o, n-1, show&& print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p
A329416
Among the pairwise sums of any ten consecutive terms there are exactly two prime sums: lexicographically earliest such sequence of distinct positive numbers.
Original entry on oeis.org
1, 2, 3, 7, 13, 19, 23, 25, 31, 32, 17, 8, 26, 37, 43, 49, 14, 38, 55, 61, 11, 20, 35, 67, 73, 79, 57, 9, 5, 15, 21, 42, 27, 12, 33, 30, 39, 45, 47, 18, 48, 6, 51, 24, 63, 69, 72, 75, 16, 36, 54, 60, 22, 66, 10, 4, 40, 29, 28, 34, 44, 41, 46, 50, 52, 58, 64, 53, 70, 71, 59, 62, 76, 56, 82, 88, 94, 65, 100
Offset: 1
a(1) = 1 is the smallest possible choice, there's no restriction on the first term.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (on the required two) with the 10-set {1,2,a(3),a(4),a(5),a(6),a(7),a(8),a(9),a(10)}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Note that as 2 + 3 = 5 we now have the two prime sums required with the 10-set {1,2,a(3),a(4),a(5),a(6),a(7),a(8),a(9),a(10)}.
a(4) = 7 as a(4) = 4, 5 or 6 would lead to a contradiction: indeed, the 10-sets {1,2,3,4,a(5),a(6),a(7),a(8),a(9),a(10)}, {1,2,3,5,a(5),a(6),a(7),a(8),a(9),a(10)} and {1,2,3,6,a(5),a(6),a(7),a(8),a(9),a(10)} will produce more than the two required prime sums. With a(4) = 7 we have no contradiction as the 10-set {1,2,3,7,a(5),a(6),a(7),a(8),a(9),a(10)} has now two prime sums so far: 1 + 2 = 3 and 2 + 3 = 5.
a(5) = 13 as a(5) = 4, 5, 6, 8, 9, 10, 11 or 12 would again lead to a contradiction (more than 2 prime sums with the 10-set); in combination with any other term before it, a(5) = 13 will produce only composite sums.
a(6) = 19 as 19 is the smallest available integer not leading to a contradiction: indeed, the 10-set {1,2,3,7,13,19,a(7),a(8),a(9),a(10)} shows two prime sums so far: 1 + 2 = 3 and 2 + 3 = 5.
a(7) = 23 as 23 is the smallest available integer not leading to a contradiction; indeed, the 10-set {1,2,3,7,13,19,23,a(8),a(9),a(10)} shows only two prime sums so far, which are 1 + 2 = 3 and 2 + 3 = 5.
a(8) = 25 as 25 is the smallest available integer not leading to a contradiction and producing two prime sums so far with the 10-set {1,2,3,7,13,19,23,25,a(9),a(10)}; etc.
Cf.
A329333 (3 consecutive terms, exactly 1 prime sum).
Cf.
A329405 (no prime among the pairwise sums of 3 consecutive terms).
Cf.
A329406 ..
A329410 (exactly 1 prime sum using 4, ..., 10 consecutive terms).
Cf.
A329411 ..
A329415 (exactly 2 prime sums using 3, ..., 7 consecutive terms).
See also "nonnegative" variants:
A329450 (0 primes using 3 terms),
A329452 (2 primes using 4 terms),
A329453 (2 primes using 5 terms),
A329454 (3 primes using 4 terms),
A329449 (4 primes using 4 terms),
A329455 (3 primes using 5 terms),
A329456 (4 primes using 5 terms).
-
A329416(n, show=0, o=1, N=2, M=9, p=[], U, u=o)={for(n=o, n-1, show&&print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#pM. F. Hasler, Nov 15 2019
A329455
There are exactly three primes in {a(n+i) + a(n+j), 0 <= i < j <= 4} for any n >= 0: lexicographically earliest such sequence of distinct nonnegative integers.
Original entry on oeis.org
0, 1, 2, 4, 8, 6, 3, 10, 14, 11, 5, 9, 15, 26, 12, 17, 13, 7, 18, 16, 20, 21, 19, 23, 27, 40, 22, 31, 24, 25, 29, 28, 30, 32, 33, 39, 34, 36, 35, 38, 41, 46, 37, 43, 48, 42, 55, 47, 44, 45, 52, 49, 50, 53, 56, 58, 54, 57, 51, 73, 76, 61, 59, 63, 64, 68, 60, 69, 67, 62, 65, 66, 70, 71, 72, 79, 77, 74, 81, 86, 78, 89, 82, 85, 80, 99, 84, 83, 75, 92, 87, 88, 90, 91, 93, 94, 100
Offset: 0
We start with a(0) = 0, a(1) = 1, a(2) = 2, the smallest possibilities which do not lead to a contradiction.
Now there are already 2 primes, 0 + 2 and 1 + 2, among the pairwise sums, so the next term must generate exactly one further prime. It appears that a(3) = 4 is the smallest possible choice.
Then there are 3 primes among the pairwise sums using {0, 1, 2, 4}, and the next term must not produce an additional prime as sum with these. The terms 0 and 1 exclude primes and (primes - 1). We find that a(4) = 8 is the smallest possibility.
Then there are 2 primes (1+2 and 1+4) among the pairwise sums using {1, 2, 4, 8}, and the next term must produce exactly one additional prime as sum with these terms. We find that a(5) = 6 is the smallest possibility (since 5+2 and 5+8 would give 2 primes).
Cf.
A329454 (3 primes among a(n+i)+a(n+j), 0 <= i < j <= 3).
Cf.
A329452 (2 primes among a(n+i)+a(n+j), 0 <= i < j <= 3),
A329453 (2 primes among a(n+i)+a(n+j), 0 <= i < j <= 4).
Cf.
A329333 (1 odd prime among a(n+i)+a(n+j), 0 <= i < j <= 2),
A329450 (0 primes among a(n+i)+a(n+j), 0 <= i < j <= 2).
Cf.
A329405 ff: variants defined for positive integers.
-
A329455(n, show=0, o=0, N=3, M=4, p=[], U, u=o)={for(n=o, n-1, show>0&& print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p
A329456
For any n >= 0, exactly four sums a(n+i) + a(n+j) are prime, for 0 <= i < j <= 4: lexicographically earliest such sequence of distinct nonnegative integers.
Original entry on oeis.org
0, 1, 2, 3, 24, 4, 5, 7, 8, 6, 9, 10, 11, 13, 18, 12, 16, 19, 29, 25, 42, 14, 15, 17, 20, 21, 22, 23, 26, 38, 45, 27, 28, 33, 40, 32, 31, 39, 30, 41, 48, 49, 36, 35, 34, 37, 43, 66, 47, 50, 46, 51, 52, 53, 55, 54, 44, 56, 83, 63, 59, 68, 64, 67, 72, 85, 57, 70, 79, 78, 58, 60, 61, 121, 76, 71, 90, 73
Offset: 0
We start with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, the smallest possibilities which do not lead to a contradiction. Indeed, the four sums 0 + 2, 0 + 3, 1 + 2 and 2 + 3 are prime.
Now the next term must not give an additional prime when added to any of {0, 1, 2, 3}. We find that a(4) = 24 is the smallest possible choice.
Then there are 2 primes (1+2, 2+3) among the pairwise sums using {1, 2, 3, 24}, so the next term must produce two more prime sums. We find that a(5) = 4 is correct, with 1+4 and 3+4.
a(10^5) = 99948.
a(10^6) = 999923 and all numbers below 999904 occurred by then.
Other sequences with N primes among pairwise sums of M consecutive terms, starting with a(o) = o, sorted by decreasing N:
A329581 (N=11, M=8, o=0),
A329580 (N=10, M=8, o=0),
A329579 (N=9, M=7, o=0),
A329577 (N=7, M=7, o=0),
A329566 (N=6, M=6, o=0),
A329449 (N=4, M=4, o=0), this
A329456 (N=4, M=5, o=0),
A329454 (3, 4, 0),
A329455 (3, 5, 0),
A329411 (2, 3, o=1 and 0),
A329452 (2, 4, 0),
A329412 (2, 4, 1),
A329453 (2, 5, 0),
A329413 (2, 5, 1),
A329333 (N=1, M=3, o=0 and 1),
A329450 (0, 3, 0),
A329405 (0, 3, 1).
-
A329455(n, show=0, o=0, N=4, M=4, p=[], U, u=o)={for(n=o, n-1, show>0&& print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p
Showing 1-10 of 27 results.
Comments