cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A013663 Decimal expansion of zeta(5).

Original entry on oeis.org

1, 0, 3, 6, 9, 2, 7, 7, 5, 5, 1, 4, 3, 3, 6, 9, 9, 2, 6, 3, 3, 1, 3, 6, 5, 4, 8, 6, 4, 5, 7, 0, 3, 4, 1, 6, 8, 0, 5, 7, 0, 8, 0, 9, 1, 9, 5, 0, 1, 9, 1, 2, 8, 1, 1, 9, 7, 4, 1, 9, 2, 6, 7, 7, 9, 0, 3, 8, 0, 3, 5, 8, 9, 7, 8, 6, 2, 8, 1, 4, 8, 4, 5, 6, 0, 0, 4, 3, 1, 0, 6, 5, 5, 7, 1, 3, 3, 3, 3
Offset: 1

Views

Author

Keywords

Comments

In a widely distributed May 2011 email, Wadim Zudilin gave a rebuttal to v1 of Kim's 2011 preprint: "The mistake (unfixable) is on p. 6, line after eq. (3.3). 'Without loss of generality' can be shown to work only for a finite set of n_k's; as the n_k are sufficiently large (and N is fixed), the inequality for epsilon is false." In a May 2013 email, Zudilin extended his rebuttal to cover v2, concluding that Kim's argument "implies that at least one of zeta(2), zeta(3), zeta(4) and zeta(5) is irrational, which is trivial." - Jonathan Sondow, May 06 2013
General: zeta(2*s + 1) = (A000364(s)/A331839(s)) * Pi^(2*s + 1) * Product_{k >= 1} (A002145(k)^(2*s + 1) + 1)/(A002145(k)^(2*s + 1) - 1), for s >= 1. - Dimitris Valianatos, Apr 27 2020

Examples

			1/1^5 + 1/2^5 + 1/3^5 + 1/4^5 + 1/5^5 + 1/6^5 + 1/7^5 + ... =
1 + 1/32 + 1/243 + 1/1024 + 1/3125 + 1/7776 + 1/16807 + ... = 1.036927755143369926331365486457...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.
  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

Crossrefs

Programs

Formula

From Peter Bala, Dec 04 2013: (Start)
Definition: zeta(5) = Sum_{n >= 1} 1/n^5.
zeta(5) = 2^5/(2^5 - 1)*(Sum_{n even} n^5*p(n)*p(1/n)/(n^2 - 1)^6 ), where p(n) = n^2 + 3. See A013667, A013671 and A013675. (End)
zeta(5) = Sum_{n >= 1} (A010052(n)/n^(5/2)) = Sum_{n >= 1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n^(5/2)). - Mikael Aaltonen, Feb 22 2015
zeta(5) = Product_{k>=1} 1/(1 - 1/prime(k)^5). - Vaclav Kotesovec, Apr 30 2020
From Artur Jasinski, Jun 27 2020: (Start)
zeta(5) = (-1/30)*Integral_{x=0..1} log(1-x^4)^5/x^5.
zeta(5) = (1/24)*Integral_{x=0..infinity} x^4/(exp(x)-1).
zeta(5) = (2/45)*Integral_{x=0..infinity} x^4/(exp(x)+1).
zeta(5) = (1/(1488*zeta(1/2)^5))*(-5*Pi^5*zeta(1/2)^5 + 96*zeta'(1/2)^5 - 240*zeta(1/2)*zeta'(1/2)^3*zeta''(1/2) + 120*zeta(1/2)^2*zeta'(1/2)*zeta''(1/2)^2 + 80*zeta(1/2)^2*zeta'(1/2)^2*zeta'''(1/2)- 40*zeta(1/2)^3*zeta''(1/2)*zeta'''(1/2) - 20*zeta(1/2)^3*zeta'(1/2)*zeta''''(1/2)+4*zeta(1/2)^4*zeta'''''(1/2)). (End).
From Peter Bala, Oct 29 2023: (Start)
zeta(3) = (8/45)*Integral_{x >= 1} x^3*log(x)^3*(1 + log(x))*log(1 + 1/x^x) dx = (2/45)*Integral_{x >= 1} x^4*log(x)^4*(1 + log(x))/(1 + x^x) dx.
zeta(5) = 131/128 + 26*Sum_{n >= 1} (n^2 + 2*n + 40/39)/(n*(n + 1)*(n + 2))^5.
zeta(5) = 5162893/4976640 - 1323520*Sum_{n >= 1} (n^2 + 4*n + 56288/12925)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4))^5. Taking 10 terms of the series gives a value for zeta(5) correct to 20 decimal places.
Conjecture: for k >= 1, there exist rational numbers A(k), B(k) and c(k) such that zeta(5) = A(k) + B(k)*Sum_{n >= 1} (n^2 + 2*k*n + c(k))/(n*(n + 1)*...*(n + 2*k))^5. A similar conjecture can be made for the constant zeta(3). (End)
zeta(5) = (694/204813)*Pi^5 - Sum_{n >= 1} (6280/3251)*(1/(n^5*(exp(4*Pi*n)-1))) + Sum_{n >= 1} (296/3251)*(1/(n^5*(exp(5*Pi*n)-1))) - Sum_{n >= 1} (1073/6502)*(1/(n^5*(exp(10*Pi*n)-1))) + Sum_{n >= 1} (37/6502)*(1/(n^5*(exp(20*Pi*n)-1))). - Simon Plouffe, Jan 06 2024
From Peter Bala, Apr 27 2025: (Start)
zeta(5) = 1/5! * Integral_{x >= 0} x^5 * exp(x)/(exp(x) - 1)^2 dx = (16/15) * 1/5! * Integral_{x >= 0} x^5 * exp(x)/(exp(x) + 1)^2 dx.
zeta(5) = 1/6! * Integral_{x >= 0} x^6 * exp(x)*(exp(x) + 1)/(exp(x) - 1)^3 dx = 1/(3^3 * 5^2) * Integral_{x >= 0} x^6 * exp(x)*(exp(x) - 1)/(exp(x) + 1)^3 dx. (End)
zeta(5) = Sum_{i, j >= 1} 1/((i^4)*j*binomial(i+j, i)). More generally, zeta(n+1) = Sum_{i, j >= 1} 1/((i^n)*j*binomial(i+j, i)) for n >= 1. - Peter Bala, Aug 07 2025

A340471 Denominators of an approximation to zeta(n)/Pi^n.

Original entry on oeis.org

2, 6, 28, 90, 1488, 945, 182880, 9450, 8241408, 93555, 14856307200, 638512875, 1569400842240, 18243225, 5713142135500800, 325641566250, 1096948397364019200, 38979295480125, 6713362606110031872000, 1531329465290625, 408173030347971900211200, 13447856940643125
Offset: 1

Views

Author

Melchor Viso Martinez, Jan 08 2021

Keywords

Examples

			1/2, 1/6, 1/28, 1/90, 5/1488, 1/945, 61/182880, 1/9450, 277/8241408, 1/93555, 50521/14856307200, 691/638512875, ...
Values are approximate for odd indices, exact for even indices:
  zeta(1) ~       1/2             zeta(2) = Pi^2/6
  zeta(3) ~    Pi^3/28            zeta(4) = Pi^4/90
  zeta(5) ~  5*Pi^5/1488          zeta(6) = Pi^6/945
  zeta(7) ~ 61*Pi^7/182880,       zeta(8) = Pi^8/9450
  ...
		

Crossrefs

Cf. A000831, A002432, A331839, A340472 (numerators).

Programs

  • Mathematica
    a[k_] := Denominator[(1/(4 (1 - 2^-k) k!)
          D[\[Lambda] Tan[(\[Pi] + \[Lambda])/4], {\[Lambda],
           k}]) /. {\[Lambda] -> 0}]
  • PARI
    a(n) = {my(t=tan(x/4 + O(x*x^n))); denominator(polcoef(x*(1 + t)/(1 - t), n)/((4-2^(2-n))))} \\ Andrew Howroyd, Jan 10 2021

Formula

a(n) = denominator of lim_{x->0} of the n-th derivative of x*tan((Pi+x)/4)/((4-2^(2-n))*n!) with respect to x.
a(2*n) = A002432(n).
From Andrew Howroyd, Jan 10 2021: (Start)
a(n) = denominator of (1/(4-2^(2-n)))*[x^n] x*(1 + tan(x/4))/(1 - tan(x/4)).
a(n) = denominator( A000831(n-1)/((n-1)!*2^n*(2^n-1)) ). (End)

A352602 a(n) = 4^n*(2^(2*n+1)-1)*(2*n)!.

Original entry on oeis.org

1, 56, 11904, 5852160, 5274501120, 7606429286400, 16070664624537600, 46802060374022553600, 179724025424120905728000, 879933863508054097526784000, 5350005543376937290448240640000, 39547255119844566012586402775040000, 349281388446657765223160470894018560000
Offset: 0

Views

Author

Artur Jasinski, Mar 22 2022

Keywords

Comments

For n>0, PolyGamma(2*n,1/4) = -a(n)*Zeta(2*n+1) - A000816(n)*Pi^(2n+1) = -2^(2*n-1)*(A331839(n)*Zeta(2*n+1) + A000364(n)*Pi^(2n+1)).

Examples

			PolyGamma(2,1/4) = -56*zeta(3) - 2*Pi^3
PolyGamma(4,1/4) = -11904*zeta(5) - 40*Pi^5
PolyGamma(6,1/4) = -5852160*zeta(7) - 1952*Pi^7
		

Crossrefs

Programs

  • Maple
    A352602 := proc(n)
        4^n*(2^(2*n+1)-1)*(2*n)! ;
    end proc:
    seq(A352602(n),n=0..30) ; # R. J. Mathar, Aug 19 2022
  • Mathematica
    Table[4^n*(2^(2*n + 1) - 1)*(2*n)!, {n, 0, 12}]
  • PARI
    a(n) = n<<=1; my(f=n!<Kevin Ryde, Mar 23 2022

Formula

a(n) = (-Pi^(2*n+1)*A000816(n) - PolyGamma(2*n,1/4))/zeta(2*n+1).
a(n) = 2^(2*n-1)*A331839(n).
D-finite with recurrence a(n) -40*n*(2*n-1)*a(n-1) +256*n*(n-1)*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 19 2022
Showing 1-3 of 3 results.