A332119
a(n) = (10^(2n+1)-1)/9 + 8*10^n.
Original entry on oeis.org
9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)9(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11911...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332112 ..
A332118 (variants with different middle digit 2, ..., 8).
-
A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
-
apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
-
def A332119(n): return 10**(n*2+1)//9+8*10**n
A332129
a(n) = 2*(10^(2n+1)-1)/9 + 7*10^n.
Original entry on oeis.org
9, 292, 22922, 2229222, 222292222, 22222922222, 2222229222222, 222222292222222, 22222222922222222, 2222222229222222222, 222222222292222222222, 22222222222922222222222, 2222222222229222222222222, 222222222222292222222222222, 22222222222222922222222222222, 2222222222222229222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332119 ..
A332189 (variants with different repeated digit 1, ..., 8).
Cf.
A332120 ..
A332128 (variants with different middle digit 0, ..., 8).
-
A332129 := n -> 2*(10^(2*n+1)-1)/9+7*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,292,22922},20] (* Harvey P. Dale, Jun 25 2020 *)
-
apply( {A332129(n)=10^(n*2+1)\9*2+7*10^n}, [0..15])
-
def A332129(n): return 10**(n*2+1)//9*2+7*10**n
A332180
a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.
Original entry on oeis.org
0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332181 ..
A332189 (variants with different middle digit 1, ..., 9).
Subsequence of
A006072 (numbers with mirror symmetry about middle),
A153806 (strobogrammatic cyclops numbers), and
A204095 (numbers whose decimal digits are in {0,8}).
-
A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
-
Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
-
def A332180(n): return (10**(n*2+1)//9-10**n)*8
A332139
a(n) = (10^(2*n+1)-1)/3 + 6*10^n.
Original entry on oeis.org
9, 393, 33933, 3339333, 333393333, 33333933333, 3333339333333, 333333393333333, 33333333933333333, 3333333339333333333, 333333333393333333333, 33333333333933333333333, 3333333333339333333333333, 333333333333393333333333333, 33333333333333933333333333333, 3333333333333339333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332130 ..
A332138 (variants with different middle digit 0, ..., 8).
-
A332139 := n -> (10^(2*n+1)-1)/3+6*10^n;
-
Array[ (10^(2 # + 1)-1)/3 + 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,393,33933},20] (* Harvey P. Dale, Sep 17 2020 *)
-
apply( {A332139(n)=10^(n*2+1)\3+6*10^n}, [0..15])
-
def A332139(n): return 10**(n*2+1)//3+6*10**n
A332149
a(n) = 4*(10^(2*n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
9, 494, 44944, 4449444, 444494444, 44444944444, 4444449444444, 444444494444444, 44444444944444444, 4444444449444444444, 444444444494444444444, 44444444444944444444444, 4444444444449444444444444, 444444444444494444444444444, 44444444444444944444444444444, 4444444444444449444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332119 ..
A332189 (variants with different repeated digit 1, ..., 8).
Cf.
A332140 ..
A332148 (variants with different middle digit 0, ..., 8).
-
A332149 := n -> 4*(10^(2*n+1)-1)/9+5*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332149(n)=10^(n*2+1)\9*4+5*10^n}, [0..15])
-
def A332149(n): return 10**(n*2+1)//9*4+5*10**n
A332159
a(n) = 5*(10^(2*n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
9, 595, 55955, 5559555, 555595555, 55555955555, 5555559555555, 555555595555555, 55555555955555555, 5555555559555555555, 555555555595555555555, 55555555555955555555555, 5555555555559555555555555, 555555555555595555555555555, 55555555555555955555555555555, 5555555555555559555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332119 ..
A332189 (variants with different repeated digit 1, ..., 8).
Cf.
A332150 ..
A332159 (variants with different middle digit 0, ..., 9).
-
A332159 := n -> 5*(10^(2*n+1)-1)/9+4*10^n;
-
Array[5 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,5],PadRight[{9},n+1,5]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,595,55955},20] (* Harvey P. Dale, May 31 2023 *)
-
apply( {A332159(n)=10^(n*2+1)\9*5+4*10^n}, [0..15])
-
def A332159(n): return 10**(n*2+1)//9*5+4*10**n
A332169
a(n) = 6*(10^(2*n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
9, 696, 66966, 6669666, 666696666, 66666966666, 6666669666666, 666666696666666, 66666666966666666, 6666666669666666666, 666666666696666666666, 66666666666966666666666, 6666666666669666666666666, 666666666666696666666666666, 66666666666666966666666666666, 6666666666666669666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332119 ..
A332189 (variants with different repeated digit 1, ..., 8).
Cf.
A332160 ..
A332169 (variants with different middle digit 0, ..., 9).
-
A332169 := n -> 6*(10^(2*n+1)-1)/9+3*10^n;
-
Array[6 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332169(n)=10^(n*2+1)\9*6+3*10^n}, [0..15])
-
def A332169(n): return 10**(n*2+1)//9*6+3*10**n
A332181
a(n) = 8*(10^(2n+1)-1)/9 - 7*10^n.
Original entry on oeis.org
1, 818, 88188, 8881888, 888818888, 88888188888, 8888881888888, 888888818888888, 88888888188888888, 8888888881888888888, 888888888818888888888, 88888888888188888888888, 8888888888881888888888888, 888888888888818888888888888, 88888888888888188888888888888, 8888888888888881888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332121 ..
A332191 (variants with different repeated digit 2, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332181 := n -> 8*(10^(2*n+1)-1)/9-7*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 7*10^# &, 15, 0]
-
apply( {A332181(n)=10^(n*2+1)\9*8-7*10^n}, [0..15])
-
def A332181(n): return 10**(n*2+1)//9*8-7*10**n
A332187
a(n) = 8*(10^(2n+1)-1)/9 - 10^n.
Original entry on oeis.org
7, 878, 88788, 8887888, 888878888, 88888788888, 8888887888888, 888888878888888, 88888888788888888, 8888888887888888888, 888888888878888888888, 88888888888788888888888, 8888888888887888888888888, 888888888888878888888888888, 88888888888888788888888888888, 8888888888888887888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different "wing" digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332187 := n -> 8*(10^(2*n+1)-1)/9-10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{7,878,88788},20] (* Harvey P. Dale, Jul 21 2024 *)
-
apply( {A332187(n)=10^(n*2+1)\9*8-10^n}, [0..15])
-
def A332187(n): return 10**(n*2+1)//9*8-10**n
A332182
a(n) = 8*(10^(2n+1)-1)/9 - 6*10^n.
Original entry on oeis.org
2, 828, 88288, 8882888, 888828888, 88888288888, 8888882888888, 888888828888888, 88888888288888888, 8888888882888888888, 888888888828888888888, 88888888888288888888888, 8888888888882888888888888, 888888888888828888888888888, 88888888888888288888888888888, 8888888888888882888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332112 ..
A332192 (variants with different repeated digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332182 := n -> 8*(10^(2*n+1)-1)/9-6*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 6*10^# &, 15, 0]
-
apply( {A332182(n)=10^(n*2+1)\9*8-6*10^n}, [0..15])
-
def A332182(n): return 10**(n*2+1)//9*8-6*10**n
Showing 1-10 of 14 results.
Comments