A112029
a(n) = Sum_{k=0..n} binomial(n+k, k)^2.
Original entry on oeis.org
1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. Baldassarri, S. Bosch, B. Dwork, (eds), p-adic Analysis. Lecture Notes in Mathematics, vol. 1454, pp. 194 - 204, Springer, Berlin, Heidelberg.
- Matthijs J. Coster, Supercongruences.
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.
- Vaclav Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012
- Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
-
[(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
-
f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
ord := 30;
ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
# Mark van Hoeij, Mar 27 2013
-
Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
-
a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
-
[sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
A357671
a(n) = Sum_{k = 0..n} ( binomial(n+k-1,k) + binomial(n+k-1,k)^2 ).
Original entry on oeis.org
2, 4, 20, 166, 1812, 22504, 297362, 4067298, 56897300, 809019580, 11649254520, 169444978124, 2485270719570, 36707044807996, 545386321069862, 8144809732228666, 122177690210103060, 1839933274439787940, 27804610626798500372, 421476329345312885304, 6406685025104178888312
Offset: 0
Examples of supercongruences:
a(19) - a(1) = 421476329345312885304 - 4 = (2^2)*(5^2)*(19^5)*1913*2383*373393 == 0 (mod 19^5).
a(25) - a(5) = 5375188503768910125546897504 - 22504 = (2^3)*(5^10)*1858537* 37019662696111 == 0 (mod 5^10).
-
seq(add( binomial(n+k-1,k) + binomial(n+k-1,k)^2, k = 0..n ), n = 0..20);
-
a(n) = sum(k = 0, n, binomial(n+k-1,k) + binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
-
from math import comb
def A357671(n): return comb(n<<1,n)+sum(comb(n+k-1,k)**2 for k in range(n+1)) if n else 2 # Chai Wah Wu, Oct 28 2022
A357566
a(n) = ( Sum_{k = 0..n} binomial(n+k-1,k)^2 )^3 * ( Sum_{k = 0..n} binomial(n+k-1,k)^3 )^2.
Original entry on oeis.org
1, 32, 3556224, 4816142496896, 14260946236464636800, 62923492736113950202540032, 355372959542696519903013302282592, 2376354966106399942850054560101358877184, 17973185649572984869873798116070605084766512000, 149319509846904520286037745483655872001727895961600000
Offset: 0
a(7) - a(1) = 2376354966106399942850054560101358877184 - 32 = (2^5)*(7^5)*19*31*317*339247*25170329*2771351868561767 == 0 (mod 7^5).
-
seq((add(binomial(n+k-1,k)^2, k = 0..n))^3 * (add( binomial(n+k-1,k)^3, k = 0..n))^2, n = 0..20);
-
Table[Sum[Binomial[n+k-1,k]^2, {k, 0, n}]^3 * Sum[Binomial[n+k-1,k]^3, {k, 0, n}]^2, {n, 0, 10}] (* Vaclav Kotesovec, May 31 2025 *)
-
a(n) = sum(k = 0, n, binomial(n+k-1,k)^2)^3 * sum(k = 0, n, binomial(n+k-1,k)^3)^2; \\ Michel Marcus, Oct 25 2022
A357672
a(n) = Sum_{k = 0..n} binomial(n+k-1,k) * Sum_{k = 0..n} binomial(n+k-1,k)^2.
Original entry on oeis.org
1, 4, 84, 2920, 121940, 5607504, 273908712, 13947188112, 732102614100, 39332168075200, 2152235533317584, 119531412173662944, 6720552415489860584, 381775182057562837600, 21879043278489630349200, 1263402662473729731877920, 73438613319490294002441300, 4293679728171938162242298400
Offset: 0
Examples of supercongruences:
a(17) - a(1) = 4293679728171938162242298400 - 4 = (2^2)*(17^5)*3457* 218688360593678551 == 0 (mod 17^5).
a(5^2) - a(5) = (2^4)*(3^2)*(5^9)*7*7229*102559*465516030080883405648119 == 0 (mod 5^9).
-
seq(add(binomial(n+k-1,k), k = 0..n) * add( binomial(n+k-1,k)^2, k = 0..n), n = 0..20);
-
a(n) = sum(k = 0, n, binomial(n+k-1,k)) * sum(k = 0, n, binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
A333593
a(n) = Sum_{k = 0..n} (-1)^(n + k)*binomial(n + k - 1, k)^2.
Original entry on oeis.org
1, 0, 6, 72, 910, 12000, 163086, 2266544, 32043726, 459167040, 6651400756, 97214919648, 1431514320886, 21213380196736, 316072831033350, 4731683468079072, 71128104013487310, 1073134004384407680, 16243463355081280080, 246585461357885877920
Offset: 0
Examples of congruences:
a(11) = 97214919648 = (2^5)*3*(7^2)*(11^3)*15527 == 0 ( mod 11^3 ).
a(2*7) - a(2) = 316072831033350 - 6 = (2^13)*3*(7^3)*11*691*4933 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 3164395891098711251676512000 - 12000 = (2^5)*(5^6)*29* 124891891*1747384859327 == 0 ( mod 5^6 ).
-
seq( add( (-1)^(n+k)*binomial(n+k-1,k)^2, k = 0..n ), n = 0..25);
-
Table[Binomial[2*n-1, n]^2 * HypergeometricPFQ[{1, -n, -n}, {1 - 2 n, 1 - 2 n}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(n+k-1, k)^2); \\ Michel Marcus, Mar 29 2020
Showing 1-5 of 5 results.
Comments