cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112029 a(n) = Sum_{k=0..n} binomial(n+k, k)^2.

Original entry on oeis.org

1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
    
  • Maple
    f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
    H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
    ord := 30;
    ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
    # Mark van Hoeij, Mar 27 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
  • Sage
    [sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
    

Formula

a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Nov 23 2012
Recurrence: 2*(2*n+1)*(21*n-13)*n^2*a(n) = (1365*n^4 - 1517*n^3 + 240*n^2 + 216*n - 64)*a(n-1) - 4*(n-1)*(2*n-1)^2*(21*n+8)*a(n-2). - Vaclav Kotesovec, Nov 23 2012
G.f.: see Maple code. - Mark van Hoeij, Mar 27 2013
a(p-1) == 1 (mod p^3) for all primes p >= 5. See the comments in A173774. - Peter Bala, Jul 12 2024
a(n-1) = 1/(4*n) * binomial(2*n, n)^2 * ( 1 + 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 + 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + ... ) for n >= 1. - Peter Bala, Jul 22 2024
a(m*p^r - 1) == a(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and positive integers m and r. See Coster, Theorem 4. - Peter Bala, Nov 29 2024
a(n) = A110197(2n,n). - Alois P. Heinz, Mar 21 2025

A357671 a(n) = Sum_{k = 0..n} ( binomial(n+k-1,k) + binomial(n+k-1,k)^2 ).

Original entry on oeis.org

2, 4, 20, 166, 1812, 22504, 297362, 4067298, 56897300, 809019580, 11649254520, 169444978124, 2485270719570, 36707044807996, 545386321069862, 8144809732228666, 122177690210103060, 1839933274439787940, 27804610626798500372, 421476329345312885304, 6406685025104178888312
Offset: 0

Views

Author

Peter Bala, Oct 10 2022

Keywords

Comments

Conjectures:
1) a(p) == 4 (mod p^5) for all primes p >= 7 (checked up to p = 499). Note that A000984(p) == 2 (mod p^3) and A333592(p) == 2 (mod p^3) for all primes p >= 5.
2) For r >= 2, and all primes p >= 5, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ).
3) More generally, let m be a positive integer and set u(n) = 2*m*Sum_{k = 0..m*n} binomial(n+k-1,k) + (m + 1)*Sum_{k = 0..m*n} binomial(n+k-1,k)^2. Then the sequence {u(n)} satisfies the supercongruence u(p) == u(1) (mod p^5) for all primes p >= 7. This is the case m = 1. See A357673 for the case m = 2.
4) For r >= 2, and all primes p >= 5, u(p^r) == u(p^(r-1)) ( mod p^(3*r+3) ).

Examples

			Examples of supercongruences:
a(19) - a(1) = 421476329345312885304 - 4 = (2^2)*(5^2)*(19^5)*1913*2383*373393 == 0 (mod 19^5).
a(25) - a(5) = 5375188503768910125546897504 - 22504 = (2^3)*(5^10)*1858537* 37019662696111 == 0 (mod 5^10).
		

Crossrefs

Programs

  • Maple
    seq(add( binomial(n+k-1,k) + binomial(n+k-1,k)^2, k = 0..n ), n = 0..20);
  • PARI
    a(n) = sum(k = 0, n, binomial(n+k-1,k) + binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022
    
  • Python
    from math import comb
    def A357671(n): return comb(n<<1,n)+sum(comb(n+k-1,k)**2 for k in range(n+1)) if n else 2 # Chai Wah Wu, Oct 28 2022

Formula

a(n) = A000984(n) + A333592(n).
a(p) == 4 (mod p^3) for all primes p >= 5.
a(n) ~ 2^(4*n) / (3*Pi*n).

A357566 a(n) = ( Sum_{k = 0..n} binomial(n+k-1,k)^2 )^3 * ( Sum_{k = 0..n} binomial(n+k-1,k)^3 )^2.

Original entry on oeis.org

1, 32, 3556224, 4816142496896, 14260946236464636800, 62923492736113950202540032, 355372959542696519903013302282592, 2376354966106399942850054560101358877184, 17973185649572984869873798116070605084766512000, 149319509846904520286037745483655872001727895961600000
Offset: 0

Views

Author

Peter Bala, Oct 16 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all odd primes p except p = 5 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) (mod p^(3*r+3)) for r >= 2 and all primes p >= 5.
3) More generally, let m be a positive integer and set u(n) = ( Sum_{k = 0..m*n} binomial(n+k-1,k)^2 )^(m+2) * ( Sum_{k = 0..m*n} binomial(n+k-1,k)^3 )^(2*m). Then the supercongruences u(p) == u(1) (mod p^5) hold for all primes p >= 5.
4) u(p^r) == u(p^(r-1)) (mod p^(3*r+3)) for r >= 2 and all primes p >= 5.

Examples

			a(7) - a(1) = 2376354966106399942850054560101358877184 - 32 = (2^5)*(7^5)*19*31*317*339247*25170329*2771351868561767 == 0 (mod 7^5).
		

Crossrefs

Programs

  • Maple
    seq((add(binomial(n+k-1,k)^2, k = 0..n))^3 * (add( binomial(n+k-1,k)^3, k = 0..n))^2, n = 0..20);
  • Mathematica
    Table[Sum[Binomial[n+k-1,k]^2, {k, 0, n}]^3 * Sum[Binomial[n+k-1,k]^3, {k, 0, n}]^2, {n, 0, 10}] (* Vaclav Kotesovec, May 31 2025 *)
  • PARI
    a(n) = sum(k = 0, n, binomial(n+k-1,k)^2)^3 * sum(k = 0, n, binomial(n+k-1,k)^3)^2; \\ Michel Marcus, Oct 25 2022

Formula

a(n) ~ 2^(24*n) / (1323*Pi^6*n^6). - Vaclav Kotesovec, May 31 2025

A357672 a(n) = Sum_{k = 0..n} binomial(n+k-1,k) * Sum_{k = 0..n} binomial(n+k-1,k)^2.

Original entry on oeis.org

1, 4, 84, 2920, 121940, 5607504, 273908712, 13947188112, 732102614100, 39332168075200, 2152235533317584, 119531412173662944, 6720552415489860584, 381775182057562837600, 21879043278489630349200, 1263402662473729731877920, 73438613319490294002441300, 4293679728171938162242298400
Offset: 0

Views

Author

Peter Bala, Oct 10 2022

Keywords

Comments

Conjectures:
1) a(p) == 4 (mod p^5) for all odd primes p except p = 5 (checked up to p = 499). Note that both A000984(p) == 2 (mod p^3) and A333592(p) == 2 (mod p^3) for all primes p >= 5 and hence a(p) == 4 (mod p^3) for all primes p >= 5.
2) For r >= 2, and all primes p >= 3, a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ).
3) More generally, let m be a positive integer and set u(n) = ( Sum_{k = 0..m*n} binomial(n+k-1,k) )^(2*m) * ( Sum_{k = 0..m*n} binomial(n+k-1,k)^2 )^(m+1). Then the sequence {u(n)} satisfies the supercongruence u(p) == u(1) (mod p^5) for all primes p >= 7. See A357674 for the case m = 2.
4) For r >= 2, and all primes p >= 5, u(p^r) == u(p^(r-1)) ( mod p^(3*r+3) ).

Examples

			Examples of supercongruences:
a(17) - a(1) = 4293679728171938162242298400 - 4 = (2^2)*(17^5)*3457* 218688360593678551 == 0 (mod 17^5).
a(5^2) - a(5) = (2^4)*(3^2)*(5^9)*7*7229*102559*465516030080883405648119 == 0 (mod 5^9).
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n+k-1,k), k = 0..n) * add( binomial(n+k-1,k)^2, k = 0..n), n = 0..20);
  • PARI
    a(n) = sum(k = 0, n, binomial(n+k-1,k)) * sum(k = 0, n, binomial(n+k-1,k)^2); \\ Michel Marcus, Oct 24 2022

Formula

a(n) = A000984(n) * A333592(n).
a(n) ~ 2^(6*n)/(3*(Pi*n)^(3/2)).

A333593 a(n) = Sum_{k = 0..n} (-1)^(n + k)*binomial(n + k - 1, k)^2.

Original entry on oeis.org

1, 0, 6, 72, 910, 12000, 163086, 2266544, 32043726, 459167040, 6651400756, 97214919648, 1431514320886, 21213380196736, 316072831033350, 4731683468079072, 71128104013487310, 1073134004384407680, 16243463355081280080, 246585461357885877920
Offset: 0

Views

Author

Peter Bala, Mar 27 2020

Keywords

Comments

It is known that Sum_{k = 0..2*n} (-1)^(n+k)*C(2*n,k)^2 = C(2*n,n). Here, we consider by analogy Sum_{k = 0..n} (-1)^(n+k)*C(-n,k)^2, where C(-n,k) = (-1)^k * C(n+k-1,k) for integer n and nonnegative integer k.
The sequence b(n) = C(2*n,n) of central binomial coefficients satisfies the supercongruences b(n*p^k) = b(n*p^(k-1)) ( mod p^(3*k) ) for all prime p >= 5 and any positive integers n and k - see Mestrovic. We conjecture that the present sequence also satisfies these congruences. Some examples of the congruences are given below. For a proof of the particular case of these congruences, a(p) == 0 ( mod p^3 ) for prime p >= 5, see the Bala link. The sequence a(p)/(2*p^3) for prime p >= 5 begins [48, 304, 36519504, 4827806144, 109213719151680, 17975321574419440, ...]. Cf. A034602.
More generally, calculation suggests that for positive integer A and integer B, the sequence a(A,B;n) := Sum_{k = 0..A*n} (-1)^(n+k)* C(-B*n,k)^2 = Sum_{k = 0..A*n} (-1)^(n+k)*C(B*n+k-1,k)^2 may also satisfy the above congruences for all prime p >= 5.

Examples

			Examples of congruences:
a(11)  = 97214919648 = (2^5)*3*(7^2)*(11^3)*15527 == 0 ( mod 11^3 ).
a(2*7) - a(2) = 316072831033350 - 6 = (2^13)*3*(7^3)*11*691*4933 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 3164395891098711251676512000 - 12000 = (2^5)*(5^6)*29* 124891891*1747384859327 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq( add( (-1)^(n+k)*binomial(n+k-1,k)^2, k = 0..n ), n = 0..25);
  • Mathematica
    Table[Binomial[2*n-1, n]^2 * HypergeometricPFQ[{1, -n, -n}, {1 - 2 n, 1 - 2 n}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(n+k-1, k)^2); \\ Michel Marcus, Mar 29 2020

Formula

a(n) ~ 2^(4*n) / (5*Pi*n). - Vaclav Kotesovec, Mar 28 2020
Showing 1-5 of 5 results.