A334719 a(n) is the total number of down-steps after the final up-step in all 4-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
0, 4, 30, 250, 2245, 21221, 208129, 2098565, 21619910, 226593015, 2408424760, 25899375645, 281273231985, 3080585212120, 33986840371400, 377364606387005, 4213620859310140, 47284625533425750, 532996618440511710, 6032169040263819485, 68517222947120776290
Offset: 0
Examples
For n = 2, the a(2) = 30 is the total number of down-steps after the last up-step in UddddUdddd, UdddUddddd, UddUdddddd, UdUddddddd, UUdddddddd (thus, 4 + 5 + 6 + 7 + 8).
Links
- Stefano Spezia, Table of n, a(n) for n = 0..900
- Andrei Asinowski, Benjamin Hackl, and Sarah J. Selkirk, Down-step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Programs
-
Maple
b:= proc(x, y) option remember; `if`(x=y, x, `if`(y+4
0, b(x-1, y-1), 0)) end: a:= n-> b(5*n, 0): seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020 # second Maple program: a:= proc(n) option remember; `if`(n<2, 4*n, (5*(5*n-4)* (5*n-3)*(5*n-2)*(5*n-1)*n*(2869*n^3+5354*n^2+3239*n+634)* a(n-1))/(8*(n-1)*(4*n+3)*(2*n+1)*(4*n+5)*(n+1)* (2869*n^3-3253*n^2+1138*n-120))) end: seq(a(n), n=0..20); # Alois P. Heinz, May 09 2020 -
Mathematica
a[n_] := Binomial[5*n + 6, n + 1]/(5*n + 6) - Binomial[5*n + 1, n]/(5*n + 1); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
PARI
a(n) = {binomial(5*(n+1)+1, n+1)/(5*(n+1)+1) - binomial(5*n+1, n)/(5*n+1)} \\ Andrew Howroyd, May 08 2020
-
SageMath
[binomial(5*(n + 1) + 1, n + 1)/(5*(n + 1) + 1) - binomial(5*n + 1, n)/(5*n + 1) for n in srange(30)] # Benjamin Hackl, May 13 2020
Formula
a(n) = binomial(5*(n+1)+1, n+1)/(5*(n+1)+1) - binomial(5*n+1, n)/(5*n+1).
a(n) = A062985(n+1, 4*n-1).
G.f.: ((1 - x)*HypergeometricPFQ([1/5, 2/5, 3/5, 4/5], [1/2, 3/4, 5/4], 3125*x/256) - 1)/x. - Stefano Spezia, Apr 25 2023
Comments