A334785
a(n) is the total number of down steps before the first up step in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
Original entry on oeis.org
0, 3, 13, 74, 480, 3363, 24794, 189540, 1488744, 11941820, 97412601, 805602850, 6738919408, 56918898330, 484750343700, 4158094853640, 35891774969112, 311529010178628, 2717299393716836, 23806014817182600, 209389427777770240, 1848322153489496355
Offset: 0
For n = 1, there are the 3_2-Dyck paths UDDD, DUDD, DDUD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
-
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n+1) - Binomial[4*n+2, n]/(n+1); Array[a, 22, 0]
A334786
a(n) is the total number of down steps before the first up step in all 4_2-Dyck paths of length 5*n. A 4_2-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
Original entry on oeis.org
0, 3, 16, 115, 950, 8510, 80388, 788392, 7950930, 81935425, 859005840, 9132977490, 98240702586, 1067197649840, 11691092372000, 129011823098160, 1432744619523530, 16000911127589355, 179590878292003200, 2024687100104286525, 22917687021180660940
Offset: 0
For n = 1, there are the 4_2-Dyck paths UDDDD, DUDDD, DDUDD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
-
a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n+1) - 2 * Binomial[5*n+2, n]/(n+1); Array[a, 21, 0]
A334612
a(n) is the total number of down-steps after the final up-step in all 4_3-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 10, 100, 955, 9296, 92704, 944636, 9801929, 103262436, 1101802764, 11883775540, 129365990061, 1419569592748, 15686292728288, 174399501150236, 1949516926153045, 21898270953801720, 247045453792464294, 2797968888077323968, 31801559116255638374, 362622937212800684560
Offset: 0
For n = 1, a(1) = 10 is the total number of down-steps after the last up-step in Udddd, dUddd, ddUdd, dddUd.
-
a[n_] := 4 * Binomial[5*n + 9, n + 1]/(5*n + 9) - 16 * Binomial[5*n + 4, n]/(5*n + 4); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
A334651
a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.
Original entry on oeis.org
0, 7, 25, 155, 1195, 10282, 94591, 910480, 9054965, 92310075, 959473878, 10129715890, 108327387675, 1170975480360, 12773887368040, 140445927510832, 1554748206904325, 17314584431331025, 193849445090545875, 2180550929942519685, 24632294533221865028
Offset: 0
For n = 1, the 4_1-Dyck paths are DUDDD, UDDDD. This corresponds to a(1) = 3 + 4 = 7 down steps between the 1st up step and the end of the path.
-
a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n + 1) - 3 * Binomial[5*n + 1, n]/(n + 1) + 8*Binomial[5*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
-
[4*binomial(5*n, n)/(n + 1) - 3*binomial(5*n + 1, n)/(n + 1) + 8*binomial(5*(n - 1), n - 1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)]
Showing 1-4 of 4 results.
Comments