A293037
E.g.f.: exp(1 + x - exp(x)).
Original entry on oeis.org
1, 0, -1, -1, 2, 9, 9, -50, -267, -413, 2180, 17731, 50533, -110176, -1966797, -9938669, -8638718, 278475061, 2540956509, 9816860358, -27172288399, -725503033401, -5592543175252, -15823587507881, 168392610536153, 2848115497132448, 20819319685262839
Offset: 0
-
f:= series(exp(1 + x - exp(x)), x= 0, 101): seq(factorial(n) * coeff(f, x, n), n = 0..30); # Muniru A Asiru, Oct 31 2017
# second Maple program:
b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n+1, 1):
seq(a(n), n=0..35); # Alois P. Heinz, Dec 01 2021
-
m = 26; Range[0, m]! * CoefficientList[Series[Exp[1 + x - Exp[x]], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -1], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-exp(x)+1+x)))
-
a(n) = if(n==0, 1, -sum(k=0, n-2, binomial(n-1, k)*a(k))); \\ Seiichi Manyama, Aug 02 2021
A335975
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1) + x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 15, 1, 1, 5, 19, 47, 52, 1, 1, 6, 29, 103, 227, 203, 1, 1, 7, 41, 189, 622, 1215, 877, 1, 1, 8, 55, 311, 1357, 4117, 7107, 4140, 1, 1, 9, 71, 475, 2576, 10589, 29521, 44959, 21147, 1, 1, 10, 89, 687, 4447, 23031, 88909, 227290, 305091, 115975, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 5, 11, 19, 29, 41, 55, ...
1, 15, 47, 103, 189, 311, 475, ...
1, 52, 227, 622, 1357, 2576, 4447, ...
1, 203, 1215, 4117, 10589, 23031, 44683, ...
1, 877, 7107, 29521, 88909, 220341, 478207, ...
-
T[0, k_] := 1; T[n_, k_] := T[n - 1, k] + k * Sum[T[j, k] * Binomial[n - 1, j], {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Jul 03 2020 *)
A309775
Expansion of e.g.f. exp(2 * (1 - exp(x)) + x).
Original entry on oeis.org
1, -1, -1, 3, 7, -13, -89, -45, 1191, 4723, -6873, -143597, -499289, 1843891, 28132391, 104223059, -508838745, -8597456141, -39770287321, 158845792147, 3788893515687, 23979078221619, -38626203043289, -2200108609291821, -19878849864738137, -27269435066568845
Offset: 0
-
m = 25; Range[0, m]! * CoefficientList[Series[Exp[2 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -2], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(2*(1-exp(x))+x)))
A341287
Triangle read by rows: T(n,k) = Sum_{i=0..n-1} binomial(n-1, i)*T(n-1-i,k-1) - Sum_{i=1..n-1} binomial(n-1,i)*T(n-1-i,k) for 1 <= k <= n+1 with T(0,1) = 1 (and T(n,k) = 0 otherwise).
Original entry on oeis.org
1, 0, 1, -1, 1, 1, -1, -2, 3, 1, 2, -9, 1, 6, 1, 9, -9, -25, 15, 10, 1, 9, 50, -104, -20, 50, 15, 1, -50, 267, -98, -364, 105, 119, 21, 1, -267, 413, 1163, -1610, -539, 574, 238, 28, 1, -413, -2180, 7569, -1511, -6636, 903, 1806, 426, 36, 1, 2180, -17731, 17491, 29580, -32570, -12957, 8757, 4500, 705, 45, 1
Offset: 0
Triangle T(n,k) with rows n >= 0 and columns 1 <= k <= n+1 begins:
1,
0, 1,
-1, 1, 1,
-1, -2, 3, 1,
2, -9, 1, 6, 1,
9, -9, -25, 15, 10, 1,
9, 50, -104, -20, 50, 15, 1,
-50, 267, -98, -364, 105, 119, 21, 1,
-267, 413, 1163, -1610, -539, 574, 238, 28, 1,
-413, -2180, 7569, -1511, -6636, 903, 1806, 426, 36, 1,
...
-
egf := k-> (exp(x)-1)^(k-1)/(k-1)!*exp(x-(exp(x)-1)):
A341287 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A341287(n, k), k=1..n+1)), n=0..9); # Mélika Tebni, Apr 20 2022
A320432
Expansion of e.g.f. exp(3 * (1 - exp(x)) + x).
Original entry on oeis.org
1, -2, 1, 7, -8, -65, 37, 1024, 1351, -19001, -92618, 232513, 4087189, 9953926, -123909155, -1170342533, -676144160, 62840385619, 490129709977, -551829062288, -40624407525941, -305175084654341, 698633855671510, 34571970743398621, 278738497423756153, -663168571756087538
Offset: 0
-
m = 25; Range[0, m]! * CoefficientList[Series[Exp[3 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -3], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(3*(1-exp(x))+x)))
A320433
Expansion of e.g.f. exp(4 * (1 - exp(x)) + x).
Original entry on oeis.org
1, -3, 5, 5, -43, -27, 597, 805, -11883, -40475, 265685, 2133157, -3405803, -107760283, -301542315, 4458255397, 42421260949, -45046794011, -3365690666283, -19844416105563, 138274174035221, 2917746747446373, 11092963732101461, -207438902364296411, -3205301465165742187
Offset: 0
-
m = 24; Range[0, m]! * CoefficientList[Series[Exp[4 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -4], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(4*(1-exp(x))+x)))
Showing 1-6 of 6 results.
Comments