cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007726 Number of spanning trees of quarter Aztec diamonds of order n.

Original entry on oeis.org

1, 1, 4, 56, 2640, 411840, 210613312, 351102230528, 1901049105201408, 33349238079515381760, 1892086487183556298556416, 346728396311328694807284940800, 205021218459835103075295973360128000, 390870571052378289975757743555515137130496
Offset: 1

Views

Author

Keywords

References

  • Mihai Ciucu (ciucu(AT)math.gatech.edu), in preparation, 2001.

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[4 - 2*Cos[j*Pi/n] - 2*Cos[k*Pi/n], {j, 1, k-1}], {k, 2, n-1}], {n, 1, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)
    Table[Sqrt[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x] / (n * 2^(n-1))], {n, 1, 15}] (* Vaclav Kotesovec, Dec 30 2020 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(j=2, n-1, prod(i=1, j-1, 4*sin(i*Pi/(2*n))^2+4*sin(j*Pi/(2*n))^2)))} \\ Seiichi Manyama, Dec 29 2020

Formula

a(n) = Product_{0Sean A. Irvine, Jan 20 2018
From Vaclav Kotesovec, Dec 30 2020: (Start)
a(n) ~ sqrt(Gamma(1/4)) * 2^(5/8) * exp(2*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n/2) * (1 + sqrt(2))^n), where G is Catalan's constant A006752.
a(n) = sqrt(A007341(n) / (n * 2^(n-1))). (End)

Extensions

More terms from Sean A. Irvine, Jan 20 2018

A127605 a(n) = 2^(2*n*n) * Product_{i=1..n} Product_{j=1..n} (sin(i*Pi/(2*n+1))^2 + sin(j*Pi/(2*n+1))^2).

Original entry on oeis.org

1, 6, 500, 463736, 4614756624, 485005220494432, 533978739649683515200, 6129678550595328659594928000, 731483813983605533022316212534132992, 905665520470954445892575061753881157482726912
Offset: 0

Views

Author

Miklos Kristof, Apr 03 2007

Keywords

Crossrefs

Programs

  • Maple
    for n from 0 to 12 do a[n]:=2^(2*n*n)*product(product(sin(i*Pi/(2*n+1))^2+ sin(j*Pi/(2*n+1))^2,j=1..n),i=1..n) od: seq(round(evalf(a[n],300)),n=0..12);
  • Mathematica
    Table[(2*n+1) * 2^(n*(2*n-1)) * Product[Product[Sin[i*Pi/(2*n + 1)]^2 + Sin[j*Pi/(2*n + 1)]^2, {i, 1, j-1}], {j, 2, n}]^2, {n, 0, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)

Formula

a(n) ~ Gamma(1/4) * exp(G*(2*n+1)^2/Pi) / (2^(3/2) * Pi^(3/4) * sqrt(n)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Dec 30 2020

A340185 Number of spanning trees in the halved Aztec diamond HOD_n.

Original entry on oeis.org

1, 1, 15, 2639, 5100561, 105518291153, 23067254643457375, 52901008815129395889375, 1266973371422697144030728637409, 315937379766837559600972497421046382689, 818563964325891485548944567913851815851212484079
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

*
|
* *---*---*
| | | |
* *---*---* *---*---*---*---*
| | | | | | | | |
*---*---* *---*---*---*---* *---*---*---*---*---*---*
HOD_1 HOD_2 HOD_3
-------------------------------------------------------------
*
|
*---*---*
| | |
*---*---*---*---*
| | | | |
*---*---*---*---*---*---*
| | | | | | |
*---*---*---*---*---*---*---*---*
HOD_4

Crossrefs

Cf. A004003, A007725, A007726, A065072, A127605, A340052, A340176 (halved Aztec diamond HMD_n).

Programs

  • Mathematica
    Table[4^((n-1)*n) * Product[Product[(1 - Cos[j*Pi/(2*n + 1)]^2*Cos[k*Pi/(2*n + 1)]^2), {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(j=1, 2*n, prod(k=j+1, 2*n-j, 4-4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))))}
    
  • PARI
    default(realprecision, 120);
    {a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} \\ Seiichi Manyama, Jan 02 2021
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_HOD(n):
        s = 1
        grids = []
        for i in range(2 * n + 1, 1, -2):
            for j in range(i - 2):
                a, b, c = s + j, s + j + 1, s + i + j
                grids.extend([(a, b), (b, c)])
            grids.append((s + i - 2, s + i - 1))
            s += i
        return grids
    def A340185(n):
        if n == 0: return 1
        universe = make_HOD(n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A340185(n) for n in range(7)])

Formula

a(n) = Product_{1<=j
From Seiichi Manyama, Jan 02 2021: (Start)
a(n) = 4^((n-1)*n) * Product_{1<=j
a(n) = A340052(n) * A065072(n) = (1/2^n) * sqrt(A127605(n) * A004003(n) / (2*n+1)). (End)
a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n + 3/4) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021

A340396 a(n) = 2^(n^2 - 1) * Product_{j=1..n, k=1..n} (1 + sin(Pi*j/n)^2 + sin(Pi*k/n)^2).

Original entry on oeis.org

0, 1, 96, 93789, 1244160000, 241885578271872, 700566272328037500000, 30323548995402141685610526683, 19627362048402730985830806120284160000, 189995156103157091521654945902925881881155376920, 27506190205802587152768139358989866456457087869970721213256
Offset: 0

Author

Vaclav Kotesovec, Jan 06 2021

Keywords

Programs

  • Mathematica
    Table[2^(n^2 - 1) * Product[1 + Sin[Pi*j/n]^2 + Sin[Pi*k/n]^2, {j, 1, n}, {k, 1, n}], {n, 0, 10}] // Round

Formula

a(n) = 2^(n^2-1) * Product_{j=1..n, k=1..n} (3 - cos(Pi*j/n)^2 - cos(Pi*k/n)^2).
a(n) = 2^(n^2-1) * Product_{j=1..n, k=1..n} (2-cos(2*Pi*j/n)/2-cos(2*Pi*k/n)/2).
a(n) ~ 2^(n^2-1) * exp(4*c*n^2/Pi^2), where c = Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + sin(x)^2 + sin(y)^2) dy dx = -Pi^2*(log(2) + log(sqrt(2)-1)/2) + Pi * Integral_{x=0..Pi/2} log(1 + sqrt(1 + 1/(1 + sin(x)^2))) dx = A340421 = 1.627008991085721315763766677017604437985734719035793082916212355323520649...

A340168 Decimal expansion of a constant related to the asymptotics of A004003.

Original entry on oeis.org

1, 1, 0, 8, 8, 6, 2, 2, 5, 8, 7, 8, 0, 7, 6, 7, 5, 1, 3, 2, 7, 6, 9, 5, 1, 1, 6, 2, 1, 3, 0, 8, 1, 9, 2, 9, 2, 6, 4, 5, 2, 6, 6, 1, 2, 6, 9, 6, 3, 5, 6, 9, 2, 2, 4, 3, 6, 2, 9, 4, 3, 1, 4, 1, 8, 4, 4, 7, 3, 5, 5, 6, 5, 3, 0, 9, 3, 4, 8, 6, 6, 3, 2, 1, 3, 4, 3, 9, 7, 1, 4, 6, 7, 5, 0, 7, 9, 0, 1, 5, 5, 7, 4, 0, 5
Offset: 1

Author

Vaclav Kotesovec, Dec 30 2020

Keywords

Examples

			1.1088622587807675132769511621308192926452661269635692243629431418447355653...
		

Programs

  • Mathematica
    RealDigits[2*E^(Catalan/Pi)/(1 + Sqrt[2]), 10, 110][[1]]

Formula

Equals lim_{n->infinity} A004003(n) / ((sqrt(2)-1)^(2*n) * exp(4*G*n*(n+1)/Pi)), where G is the Catalan's constant A006752.
Equals 2*exp(G/Pi) / (1 + sqrt(2)), where G is Catalan's constant A006752.
Showing 1-5 of 5 results.