A344062
Expansion of Product_{k>=1} (1 + 3^(k-1)*x^k).
Original entry on oeis.org
1, 1, 3, 12, 36, 135, 432, 1539, 4860, 17496, 55404, 192456, 623295, 2125764, 6849684, 23442453, 75110328, 252965916, 822670668, 2735858268, 8838926712, 29501352792, 95090206689, 314068876416, 1018141045092, 3342663979092, 10798571289897, 35481518064576
Offset: 0
Cf.
A003056,
A008289,
A032308,
A300579,
A304961,
A340103,
A344063,
A344064,
A344065,
A344066,
A344067,
A344068.
-
nmax = 27; CoefficientList[Series[Product[(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 3^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 27}]
-
seq(n)={Vec(prod(k=1, n, 1 + 3^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344063
Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).
Original entry on oeis.org
1, 1, 4, 20, 80, 384, 1600, 7424, 30720, 143360, 593920, 2703360, 11403264, 51118080, 214958080, 965738496, 4047503360, 17951621120, 76168560640, 334202142720, 1411970498560, 6211596451840, 26203595472896, 114246130073600, 484815908372480, 2101441598586880, 8896148580335616
Offset: 0
Cf.
A003056,
A008289,
A261568,
A304961,
A338673,
A340103,
A344062,
A344064,
A344065,
A344066,
A344067,
A344068.
-
nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]
-
seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344064
Expansion of Product_{k>=1} (1 + 5^(k-1)*x^k).
Original entry on oeis.org
1, 1, 5, 30, 150, 875, 4500, 25625, 131250, 750000, 3843750, 21562500, 112109375, 621093750, 3222656250, 17880859375, 92578125000, 508300781250, 2658691406250, 14465332031250, 75439453125000, 411254882812500, 2142486572265625, 11590576171875000, 60722351074218750, 326728820800781250
Offset: 0
Cf.
A003056,
A008289,
A261569,
A304961,
A338674,
A340103,
A344062,
A344063,
A344065,
A344066,
A344067,
A344068.
-
nmax = 25; CoefficientList[Series[Product[(1 + 5^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 5^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 25}]
-
seq(n)={Vec(prod(k=1, n, 1 + 5^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344065
Expansion of Product_{k>=1} (1 + 6^(k-1)*x^k).
Original entry on oeis.org
1, 1, 6, 42, 252, 1728, 10584, 71280, 435456, 2939328, 17962560, 119532672, 739031040, 4867527168, 30051689472, 198147658752, 1221537687552, 7984437608448, 49643697954816, 321998350270464, 1997815999463424, 12977575759282176, 80455233450737664, 519208351807832064
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338675,
A340103,
A344062,
A344063,
A344064,
A344066,
A344067,
A344068.
-
nmax = 23; CoefficientList[Series[Product[(1 + 6^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 6^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, 1 + 6^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344066
Expansion of Product_{k>=1} (1 + 7^(k-1)*x^k).
Original entry on oeis.org
1, 1, 7, 56, 392, 3087, 21952, 170471, 1210104, 9411920, 66824632, 513890832, 3683707839, 28086110472, 201122377288, 1534688027817, 10978118077136, 83158453503608, 599161640356888, 4508826988300152, 32435340235930576, 244366486039786096, 1756858874561956865, 13161303959340223232
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338676,
A340103,
A344062,
A344063,
A344064,
A344065,
A344067,
A344068.
-
nmax = 23; CoefficientList[Series[Product[(1 + 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 7^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, 1 + 7^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344067
Expansion of Product_{k>=1} (1 + 8^(k-1)*x^k).
Original entry on oeis.org
1, 1, 8, 72, 576, 5120, 41472, 364544, 2949120, 25952256, 209977344, 1830813696, 14931722240, 129251672064, 1053340729344, 9123584278528, 74294344286208, 639503450505216, 5239722662166528, 44846880273727488, 367008185258606592, 3144110674230116352, 25718087147075928064
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338677,
A340103,
A344062,
A344063,
A344064,
A344065,
A344066,
A344068.
-
nmax = 22; CoefficientList[Series[Product[(1 + 8^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 8^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, 1 + 8^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344068
Expansion of Product_{k>=1} (1 + 9^(k-1)*x^k).
Original entry on oeis.org
1, 1, 9, 90, 810, 8019, 72900, 715149, 6495390, 63772920, 579270690, 5643903420, 51613018479, 499772430810, 4567687565310, 44250780833091, 404188047763920, 3894703308072990, 35764052204589030, 342923118899865390, 3146016498406236720, 30187757787717436380, 276843069234653897241
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338678,
A340103,
A344062,
A344063,
A344064,
A344065,
A344066,
A344067.
-
nmax = 22; CoefficientList[Series[Product[(1 + 9^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 9^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, 1 + 9^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344094
a(n) = [x^n] Product_{k>=1} (1 + n^(k+1)*x^k).
Original entry on oeis.org
1, 1, 8, 324, 5120, 171875, 13716864, 409300871, 20535312384, 976299632280, 144100000000000, 6251749326428232, 484144254340300800, 31585633366079696358, 2452531026468909711360, 483966896057281494140625, 31314307295813796764844032, 3176091371161687418319418614
Offset: 0
-
Table[SeriesCoefficient[Product[(1+n^(k+1)*x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[SeriesCoefficient[QPochhammer[-n, n*x]/(n+1), {x, 0, n}], {n, 1, 20}]]
A346452
a(n) = [x^n] Product_{k>=1} (1 + n^(k-1)*x^k) / (1 - n^(k-1)*x^k).
Original entry on oeis.org
1, 2, 6, 32, 242, 2472, 31850, 490912, 8897058, 185373722, 4344896842, 113667973344, 3283155709106, 103486639506824, 3544144942010010, 131038318999642112, 5192873357864667202, 219952910549005233840, 9916266932124308092586, 473513072853351852164160
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + n^(k - 1)*x^k)/(1 - n^(k - 1)*x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[SeriesCoefficient[2*x + (n - 1)/(n + 1)*QPochhammer[-1/n, n*x]/QPochhammer[1/n, n*x], {x, 0, n}], {n, 1, 20}]]
Showing 1-9 of 9 results.
Comments