A340159 a(n) is the smallest number m such that numbers m, m + 1, m + 2, ..., m + n - 1 have k, 2*k, 3*k, ..., n*k divisors respectively.
1, 1, 61, 421, 211082, 11238341, 16788951482, 41126483642
Offset: 1
Examples
a(3) = 61 because 61, 62 and 63 have 2, 4, and 6 divisors respectively and there is no smaller number having this property.
Links
- Lucas A. Brown, Python program.
Crossrefs
Programs
-
PARI
isok(m, n) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);} a(n) = my(m=1); while(!isok(m, n), m++); m; \\ Michel Marcus, Dec 30 2020
-
Python
# see LINKS
Extensions
a(7) from Jinyuan Wang, Dec 31 2020
a(8) from Lucas A. Brown, Mar 18 2024
Comments