cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A356184 Triangle read by rows: n-th row gives the indices of the n repunits that divide A340549(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 6, 1, 2, 3, 4, 6, 1, 2, 3, 4, 6, 12, 1, 2, 3, 4, 6, 8, 12, 1, 2, 3, 4, 5, 6, 10, 12, 1, 2, 3, 4, 5, 6, 8, 10, 12, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24
Offset: 1

Views

Author

Bernard Schott, Jul 28 2022

Keywords

Examples

			Triangle begins:
  1;
  1,  2;
  1,  2,  4;
  1,  2,  3,  6;
  1,  2,  3,  4,  6;
  1,  2,  3,  4,  6, 12;
  1,  2,  3,  4,  6,  8, 12;
  1,  2,  3,  4,  5,  6, 10, 12;
  1,  2,  3,  4,  5,  6,  8, 10, 12;
  1,  2,  3,  4,  5,  6,  8,  9, 10, 12;
  1,  2,  3,  4,  5,  6,  8,  9, 10, 12, 18;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14, 18;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14, 15, 18;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14, 15, 18, 20;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14, 15, 18, 20, 24;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14, 15, 16, 18, 20, 24;
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 12, 14, 15, 16, 18, 20, 24, 30;
  ...
The 5th row is {1, 2, 3, 4, 6} since A340549(5) = 11222211 is the least integer that is divisible by five repunits and these are R_1, R_2, R_3, R_4 and R_6.
		

Crossrefs

A340548 Integers whose number of repdigit divisors sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 66, 132, 264, 792, 3960, 14652, 26664, 29304, 79992, 146520, 399960, 1025640, 2666664, 7999992, 13333320, 39999960, 269333064, 807999192, 1346665320, 4039995960, 28279971720, 7999999999992, 8080799919192, 13333333333320, 13467999865320, 39999999999960, 40403999595960
Offset: 1

Views

Author

Bernard Schott, Jan 11 2021

Keywords

Comments

The first 10 terms are the same as A093036, then A093036(11) = 1848 while a(11) = 3960, because from a(1) to a(10), all palindromic divisors are also repdigits, and then 616 is a non-repdigit palindromic divisor of 1848.
Number of repdigit divisors: 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 17, 18, ...
Indices of repdigits: 1, 2, 3, 4, 7, ...

Examples

			132 has 12 divisors: {1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132} of which 10 are repdigits: {1, 2, 3, 4, 6, 11, 22, 33, 44, 66}. No positive integer smaller than 132 has as many as ten repdigit divisors; hence 132 is a term.
		

Crossrefs

Similar for: A053624 (odd), A181808 (even), A093036 (palindromes), A340549 (repunits).

Programs

  • Mathematica
    repQ[n_] := Length @ Union @ IntegerDigits[n] == 1; s[n_] := DivisorSum[n, 1 &, repQ[#] &]; smax =  0; seq = {}; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jan 11 2021 *)
  • PARI
    isrd(n) = {1 == #Set(digits(n))}; \\ A010785
    f(n) = sumdiv(n, d, isrd(d));
    lista(nn) = {my(m = 0); for (n=1, nn, my(x = f(n)); if (x > m, print1(n, ", "); m = x););} \\ Michel Marcus, Jan 11 2021

Extensions

a(16)-a(20) from Michel Marcus, Jan 11 2021
a(21)-a(26) from Amiram Eldar, Jan 12 2021
a(27) from Chai Wah Wu, Jan 14 2021
More terms from David A. Corneth, Jan 15 2021

A355969 Positions of records in A227872, i.e., integers whose number of odious divisors sets a new record.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 56, 84, 112, 168, 336, 672, 1344, 2184, 4368, 8736, 17472, 30576, 34944, 41664, 48048, 61152, 80080, 83328, 96096, 122304, 160160, 192192, 240240, 320320, 336336, 480480, 672672, 960960, 1345344, 1681680, 1921920, 2489760, 2690688, 2738736
Offset: 1

Views

Author

Bernard Schott, Jul 22 2022

Keywords

Comments

Corresponding records of number of odious divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...

Examples

			a(7) = 56 is in the sequence because A227872(56) = 8 is larger than any earlier value in A227872.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, OddQ[DigitCount[#, 2, 1]] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    lista(nn)= my(list = List(), m=0, new); for (n=1, nn, new = sumdiv(n, d, isod(d)); if (new > m, listput(list, n); m = new);); Vec(list); \\ Michel Marcus, Jul 22 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): return bin(n).count("1")&1
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jul 23 2022

Extensions

More terms from Amiram Eldar, Jul 22 2022

A350756 Integers whose number of divisors that are triangular numbers sets a new record.

Original entry on oeis.org

1, 3, 6, 30, 90, 180, 210, 420, 630, 1260, 2520, 6930, 13860, 27720, 41580, 83160, 138600, 180180, 360360, 540540, 1081080, 1413720, 2162160, 3063060, 6126120, 12252240, 18378360, 36756720, 73513440, 91891800, 116396280, 183783600, 232792560, 349188840
Offset: 1

Views

Author

Bernard Schott, Jan 13 2022

Keywords

Comments

Terms that are triangular: 1, 3, 6, 210, 630, 2162160, ...
The number of triangular divisors of a(n) is A007862(a(n)): 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, ...

Examples

			1260 has 36 divisors of which 12 are triangular numbers {1, 3, 6, 10, 15, 21, 28, 36, 45, 105, 210, 630}. No positive integer smaller than 1260 has as many as twelve triangular divisors; hence 1260 is a term.
		

Crossrefs

Similar for A046952 (squares), A053624 (odd), A093036 (palindromes), A181808 (even), A340548 (repdigits), A340549 (repunits) divisors.

Programs

  • Mathematica
    max=0;Do[If[(d=Length@Select[Divisors@k,IntegerQ[(Sqrt[8#+1]-1)/2]&])>max,Print@k;max=d],{k,10^10}] (* Giorgos Kalogeropoulos, Jan 13 2022 *)
  • PARI
    lista(nn) = {my(r=0); for (n=1, nn, my(m = sumdiv(n, d, ispolygonal(d,3))); if (m>r, r=m; print1(n", ")));} \\ Michel Marcus, Jan 14 2022

A355304 Integers whose number of normal undulating divisors sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 1080, 1260, 1440, 1680, 2160, 2520, 5040, 7560, 10080, 15120, 21840, 28080, 32760, 56160, 65520, 98280, 131040, 196560, 393120, 589680, 786240, 1113840, 1670760, 2227680, 3341520, 6683040, 13366080, 20049120
Offset: 1

Views

Author

Bernard Schott, Jun 30 2022

Keywords

Comments

Normal undulating integers are in A355301.
The first 14 terms are also the first 14 highly composite numbers in A002182, then A002182(15) = 840 while a(15) = 1080. Indeed, 840 is the smallest integer that has 32 divisors of which only 28 are normal undulating integers, while 1080 has also 32 divisors of which 30 are normal undulating integers.
Corresponding records of number of normal undulating divisors are 1, 2, 3, 4, 6, 8, 9, 10, 12, ...

Examples

			a(6) = 24 is in the sequence because A355302(24) is larger than any earlier value in A355302.
		

Crossrefs

Similar, but with divisors that are: A046952 (squares), A053624 (odd), A181808 (even), A093036 (palindromes), A340548 (repdigits), A340549 (repunits), A350756 (triangular).

Programs

  • Mathematica
    nuQ[n_] := AllTrue[(s = Sign[Differences[IntegerDigits[n]]]), # != 0 &] && AllTrue[Differences[s], # != 0 &]; dm = -1; seq = {}; Do[If[(d = DivisorSum[n, 1 &, nuQ[#] &]) > dm, dm = d; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jun 30 2022 *)

Extensions

More terms from Amiram Eldar, Jun 30 2022

A355772 Positions of records in A355770.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 195, 315, 900, 1575, 2100, 3900, 6300, 18900, 25200, 27300, 31500, 44100, 81900, 220500, 245700, 333900, 409500, 491400, 573300, 600600, 1201200, 2402400, 3603600, 4804800, 7207200, 10810800, 14414400, 20420400, 21621600, 40840800, 43243200
Offset: 1

Views

Author

Bernard Schott, Jul 18 2022

Keywords

Comments

Corresponding records are 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 17, ...

Examples

			a(5) = 45 is in the sequence because A355770(45) = 5 is larger than any earlier value in A355770.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; f[n_] := DivisorSum[n, 1 &, q[#] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 18 2022 *)
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): s = str(n); return all(s.count(d)%2 == int(d)%2 for d in set(s))
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 20))) # Michael S. Branicky, Jul 25 2022

Extensions

a(21)-a(31) from Michel Marcus, Jul 18 2022
a(32)-a(37) from Amiram Eldar, Jul 18 2022

A340637 Integers whose number of divisors that are Niven numbers sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 60, 72, 120, 180, 240, 360, 720, 1080, 1800, 2160, 2520, 4320, 5040, 7560, 10080, 15120, 20160, 25200, 30240, 45360, 50400, 60480, 75600, 90720, 100800, 110880, 120960, 151200, 166320, 221760, 277200, 302400, 332640, 453600, 498960, 554400
Offset: 1

Views

Author

Bernard Schott, Jan 14 2021

Keywords

Comments

A Niven number (A005349) is a number that is divisible by the sum of its digits.
The first 13 terms are the first 13 terms of A236021, then A236021(14) = 420 while a(14) = 720.

Examples

			The 8 divisors of 24 are all Niven numbers, and also, 24 is the smallest integer that has at least 8 divisors that are Niven numbers, hence 24 is a term.
		

Crossrefs

Subsequence of A333456.
Similar for palindromes (A093036), repdigits (A340548), repunits (A340549), Zuckerman numbers (A340638).

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, Divisible[#, Plus @@ IntegerDigits[#]] &]; smax = 0; seq = {}; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq (* Amiram Eldar, Jan 14 2021 *)
  • PARI
    f(n) = sumdiv(n, d, !(d % sumdigits(d))); \\ A332268
    lista(nn) = {my(m=0); for (n=1, nn, my(x = f(n)); if (x > m, m = x; print1(n, ", ")););} \\ Michel Marcus, Jan 14 2021

Extensions

More terms from Amiram Eldar, Jan 14 2021

A340797 Integers whose number of divisors that are Brazilian sets a new record.

Original entry on oeis.org

1, 7, 14, 24, 40, 48, 60, 84, 120, 168, 240, 336, 360, 420, 672, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 30240, 43680, 45360, 50400, 55440, 65520, 83160, 98280, 110880, 131040, 166320, 196560, 221760, 262080, 277200, 327600
Offset: 1

Views

Author

Bernard Schott, Jan 24 2021

Keywords

Comments

Corresponding number of Brazilian divisors: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 17, 18, 19, 26, ...
Observation: the 58 consecutive highly composite numbers from A002182(12) = 240 to A002182(69) = 2095133040 (maybe more, according to conjectured terms) are also terms of this sequence.

Examples

			40 has 8 divisors: {1, 2, 4, 5, 8, 10, 20, 40} of which 4 are Brazilian: {8, 10, 20, 40}. No positive integer smaller than 40 has as many as four Brazilian divisors; hence 40 is a term.
		

Crossrefs

Similar with: A093036 (palindromes), A340548 (repdigits), A340549 (repunits), A340637 (Niven), A340638 (Zuckerman).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[ IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; d[n_] := DivisorSum[n, 1 &, brazQ[#] &]; dm = -1; s = {}; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[s, n]], {n, 1, 1000}]; s (* Amiram Eldar, Jan 24 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    nbd(n) = sumdiv(n, d, isb(d)); \\ A340795
    lista(nn) = {my(m=-1); for (n=1, nn, my(x = nbd(n)); if (x > m, print1(n, ", "); m = x););} \\ Michel Marcus, Jan 24 2021

Extensions

a(20)-a(36) from Michel Marcus, Jan 24 2021
a(37)-a(44) from Amiram Eldar, Jan 24 2021

A340638 Integers whose number of divisors that are Zuckerman numbers sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 72, 144, 360, 432, 1080, 2016, 2160, 6048, 8064, 15120, 24192, 48384, 88704, 120960, 241920, 266112, 532224, 1064448, 1862784, 2661120, 3725568, 5322240, 7451136, 10450944, 19160064, 20901888, 28740096, 38320128, 57480192, 99283968, 114960384
Offset: 1

Views

Author

Bernard Schott, Jan 14 2021

Keywords

Comments

A Zuckerman number is a number that is divisible by the product of its digits (A007602).
The terms in this sequence are not necessarily Zuckerman numbers. For example a(7) = 72 has product of digits = 14 and 72/14 = 36/7 = 5.142...
The first seven terms are the first seven terms of A087997, then A087997(8) = 66 while a(8) = 144.

Examples

			The 8 divisors of 24 are all Zuckerman numbers, and also, 24 is the smallest integer that has at least 8 divisors that are Zuckerman numbers, hence 24 is a term.
		

Crossrefs

Subsequence of A335038.
Similar for palindromes (A093036), repdigits (A340548), repunits (A340549), Niven numbers (A340637).

Programs

  • Mathematica
    zuckQ[n_] := (prod = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prod]; s[n_] := DivisorSum[n, 1 &, zuckQ[#] &]; smax = 0; seq = {}; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jan 14 2021 *)
  • PARI
    isokz(n) = iferr(!(n % vecprod(digits(n))), E, 0); \\ A007602
    lista(nn) = {my(m=0); for (n=1, nn, my(x = sumdiv(n, d, isokz(d));); if (x > m, m = x; print1(n, ", ")););} \\ Michel Marcus, Jan 15 2021

Extensions

More terms from David A. Corneth and Amiram Eldar, Jan 15 2021
Showing 1-9 of 9 results.