A340627 a(n) = (11*2^n - 2*(-1)^n)/3 for n >= 0.
3, 8, 14, 30, 58, 118, 234, 470, 938, 1878, 3754, 7510, 15018, 30038, 60074, 120150, 240298, 480598, 961194, 1922390, 3844778, 7689558, 15379114, 30758230, 61516458, 123032918, 246065834, 492131670, 984263338, 1968526678, 3937053354, 7874106710, 15748213418, 31496426838
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Programs
-
Mathematica
LinearRecurrence[{1, 2}, {3, 8}, 35] (* Amiram Eldar, Apr 25 2021 *)
-
PARI
a(n) = (11*2^n - 2*(-1)^n)/3 \\ Felix Fröhlich, Apr 25 2021
Formula
a(n) = 2^(n+2) - A078008(n), n>=0.
a(0)=3, a(2*n+1) = 2*a(2*n) + 2, a(2*n+2) = 2*a(2*n+1) - 2, n>=0.
a(n) = 4*A052997(n-1) + 2, n>=2. - Hugo Pfoertner, Apr 25 2021
a(n+1) = 11*2^n - a(n) for n>=0.
a(n+3) = 33*2^n - a(n) for n>=0.
a(n+5) = 121*2^n - a(n) for n>=0.
etc.
a(n+2) = a(n) + 11*2^n for n>=0.
a(n+4) = a(n) + 55*2^n for n>=0.
a(n+6) = a(n) + 231*2^n for n>=0.
etc.
G.f.: (3 + 5*x)/(1 - x - 2*x^2). - Stefano Spezia, Apr 26 2021
E.g.f: (11*exp(2*x) - 2*exp(-x))/3. - Jianing Song, Apr 26 2021
Extensions
More terms from Michel Marcus, Apr 25 2021
New name from Jianing Song, Apr 25 2021
Comments