A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.
2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0
Examples
G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wieb Bosma, Signed bits and fast exponentiation, Journal de théorie des nombres de Bordeaux, Vol. 13, No. 1 (2001), pp. 27-41.
- Karl Dilcher and Larry Ericksen, Continued fractions and Stern polynomials, Ramanujan Journal 45.3 (2018): 659-681. See Table 2.
- Karl Dilcher and Hayley Tomkins, Square classes and divisibility properties of Stern polynomials, Integers, Vol. 18 (2018), Article #A29.
- Petro Kosobutskyy, The Collatz problem as a reverse n->0 problem on a graph tree formed from theta*2^n Jacobsthal-type numbers, arXiv:2306.14635 [math.GM], 2023.
- Petro Kosobutskyy and Dariia Rebot, Collatz conjecture 3n+/-1 as a Newton binomial problem, Comp. Des. Sys. Theor. Prac., Lviv Nat'l Polytech. Univ. (Ukraine 2023) Vol. 5, No. 1, 137-145. See p. 140.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Sam Northshield, Stern's diatomic sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ..., Amer. Math. Monthly, Vol. 117, No. 7 (2010), pp. 581-598.
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Crossrefs
Programs
-
Magma
[(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
Mathematica
LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
-
PARI
{a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
-
PARI
{a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
-
Sage
[(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019
Formula
G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
From Paul Curtz, Jul 21 2021: (Start)
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025
Extensions
Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010
Comments