cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A341450 Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with no part dividing all the others.

Examples

			The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
  0  .  .  .  .  32   .  43   53   54    64    65    75    76    86     87
                         52        72    73    74    543   85    95     96
                                   432   532   83    732   94    A4     B4
                                               92          A3    B3     D2
                                               542         B2    653    654
                                               632         643   743    753
                                                           652   752    762
                                                           742   932    843
                                                           832   5432   852
                                                                        942
                                                                        A32
                                                                        6432
		

Crossrefs

The complement is counted by A097986 (non-strict: A083710, rank: A339563).
The complement with no 1's is A098965 (non-strict: A083711).
The non-strict version is A338470.
The Heinz numbers of these partitions are A339562 (non-strict: A342193).
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000009 counts strict partitions (non-strict: A000041).
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]

Formula

a(n > 0) = A000009(n) - Sum_{d|n} A025147(d-1).

A338470 Number of integer partitions of n with no part dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are empty or have smallest part not dividing all the others.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (64)    (65)     (75)
           (52)   (332)  (72)    (73)    (74)     (543)
           (322)         (432)   (433)   (83)     (552)
                         (522)   (532)   (92)     (732)
                         (3222)  (3322)  (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

The complement is A083710 (strict: A097986).
The strict case is A341450.
The Heinz numbers of these partitions are A342193.
The dual version is A343341.
The case with maximum part not divisible by all the others is A343342.
The case with maximum part divisible by all the others is A343344.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
    (* Second program: *)
    a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021

Formula

a(n) = A000041(n) - Sum_{d|n} A000041(d-1) for n > 0. - Andrew Howroyd, Mar 25 2021

A343341 Number of integer partitions of n with no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are either empty, or have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (32)  (321)  (43)    (53)     (54)      (64)
               (52)    (332)    (72)      (73)
               (322)   (431)    (432)     (433)
               (3211)  (521)    (522)     (532)
                       (3221)   (531)     (541)
                       (32111)  (3222)    (721)
                                (3321)    (3322)
                                (4311)    (4321)
                                (5211)    (5221)
                                (32211)   (5311)
                                (321111)  (32221)
                                          (33211)
                                          (43111)
                                          (52111)
                                          (322111)
                                          (3211111)
		

Crossrefs

The complement is counted by A130689.
The dual version is A338470.
The Heinz numbers of these partitions are A343337.
The strict case is A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A343337 Numbers with no prime index divisible by all the other prime indices.

Original entry on oeis.org

1, 15, 30, 33, 35, 45, 51, 55, 60, 66, 69, 70, 75, 77, 85, 90, 91, 93, 95, 99, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 150, 153, 154, 155, 161, 165, 170, 175, 177, 180, 182, 186, 187, 190, 198, 201, 203, 204, 205, 207, 209, 210, 215
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2021

Keywords

Comments

Alternative name: 1 and numbers whose greatest prime index is not divisible by all the other prime indices.
First differs from A318992 in lacking 195.
First differs from A343343 in lacking 195.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part not divisible by all the others (counted by A343341). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            90: {1,2,2,3}      141: {2,15}
     15: {2,3}         91: {4,6}          143: {5,6}
     30: {1,2,3}       93: {2,11}         145: {3,10}
     33: {2,5}         95: {3,8}          150: {1,2,3,3}
     35: {3,4}         99: {2,2,5}        153: {2,2,7}
     45: {2,2,3}      102: {1,2,7}        154: {1,4,5}
     51: {2,7}        105: {2,3,4}        155: {3,11}
     55: {3,5}        110: {1,3,5}        161: {4,9}
     60: {1,1,2,3}    119: {4,7}          165: {2,3,5}
     66: {1,2,5}      120: {1,1,1,2,3}    170: {1,3,7}
     69: {2,9}        123: {2,13}         175: {3,3,4}
     70: {1,3,4}      132: {1,1,2,5}      177: {2,17}
     75: {2,3,3}      135: {2,2,2,3}      180: {1,1,2,2,3}
     77: {4,5}        138: {1,2,9}        182: {1,4,6}
     85: {3,7}        140: {1,1,3,4}      186: {1,2,11}
For example, 195 has prime indices {2,3,6}, and 6 is divisible by both 2 and 3, so 195 does not belong to the sequence.
		

Crossrefs

The complement is counted by A130689.
The dual version is A342193.
The case with smallest prime index not dividing all the others is A343338.
The case with smallest prime index dividing by all the others is A343340.
These are the Heinz numbers of the partitions counted by A343341.
Including the dual version gives A343343.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[1000],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)]&]

A343382 Number of strict integer partitions of n with either (1) no part dividing all the others or (2) no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 9, 9, 13, 18, 21, 26, 34, 38, 48, 57, 67, 81, 99, 110, 133, 157, 183, 211, 250, 282, 330, 380, 437, 502, 575, 648, 748, 852, 967, 1095, 1250, 1405, 1597, 1801, 2029, 2287, 2579, 2883, 3245, 3638, 4077, 4557, 5107, 5691, 6356
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are either (1) empty, or (2) have smallest part not dividing all the others, or (3) have greatest part not divisible by all the others.

Examples

			The a(0) = 1 through a(11) = 9 partitions (empty columns indicated by dots):
  ()  .  .  .  .  (3,2)  (3,2,1)  (4,3)  (5,3)    (5,4)    (6,4)      (6,5)
                                  (5,2)  (4,3,1)  (7,2)    (7,3)      (7,4)
                                         (5,2,1)  (4,3,2)  (5,3,2)    (8,3)
                                                  (5,3,1)  (5,4,1)    (9,2)
                                                           (7,2,1)    (5,4,2)
                                                           (4,3,2,1)  (6,3,2)
                                                                      (6,4,1)
                                                                      (7,3,1)
                                                                      (5,3,2,1)
		

Crossrefs

The first condition alone gives A341450.
The non-strict version is A343346 (Heinz numbers: A343343).
The second condition alone gives A343377.
The strict complement is A343378.
The version for "and" instead of "or" is A343379.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)||UnsameQ@@#&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A130714 Number of partitions of n such that every part divides the largest part and such that the smallest part divides every part.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 41, 42, 55, 64, 81, 83, 114, 116, 151, 168, 202, 210, 277, 289, 348, 382, 460, 478, 604, 623, 747, 812, 942, 1006, 1223, 1269, 1479, 1605, 1870, 1959, 2329, 2434, 2818, 3056, 3458, 3653, 4280, 4493, 5130, 5507, 6231, 6580
Offset: 1

Views

Author

Vladeta Jovovic, Jul 02 2007

Keywords

Comments

First differs from A130689 at a(11) = 27, A130689(11) = 28.
Alternative name: Number of integer partitions of n with a part divisible by and a part dividing all the other parts. With this definition we have a(0) = 1. - Gus Wiseman, Apr 18 2021

Examples

			From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 though a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (61)       (44)
             (111)  (31)    (221)    (42)      (331)      (62)
                    (211)   (311)    (51)      (421)      (71)
                    (1111)  (2111)   (222)     (511)      (422)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (4111)     (2222)
                                     (3111)    (22111)    (3311)
                                     (21111)   (31111)    (4211)
                                     (111111)  (211111)   (5111)
                                               (1111111)  (22211)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

The second condition alone gives A083710.
The first condition alone gives A130689.
The opposite version is A343342.
The Heinz numbers of these partitions are the complement of A343343.
The half-opposite versions are A343344 and A343345.
The complement is counted by A343346.
The strict case is A343378.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Maple
    A130714 := proc(n) local gf,den,i,k,j ; gf := 0 ; for i from 0 to n do for j from 1 to n/(1+i) do den := 1 ; for k in numtheory[divisors](i) do den := den*(1-x^(j*k)) ; od ; gf := taylor(gf+x^(j+i*j)/den,x=0,n+1) ; od ; od: coeftayl(gf,x=0,n) ; end: seq(A130714(n),n=1..60) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)

Formula

G.f.: Sum_{i>=0} Sum_{j>0} x^(j+i*j)/Product_{k|i} (1-x^(j*k)).

Extensions

More terms from R. J. Mathar, Oct 28 2007

A343377 Number of strict integer partitions of n with no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 8, 9, 13, 18, 21, 26, 32, 38, 47, 57, 66, 80, 95, 110, 132, 157, 181, 211, 246, 282, 327, 379, 435, 500, 570, 648, 743, 849, 963, 1094, 1241, 1404, 1592, 1799, 2025, 2282, 2568, 2882, 3239, 3634, 4066, 4554, 5094, 5686, 6346
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are empty or have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(12) = 9 partitions:
  (3,2)  (3,2,1)  (4,3)  (5,3)    (5,4)    (6,4)      (6,5)      (7,5)
                  (5,2)  (4,3,1)  (7,2)    (7,3)      (7,4)      (5,4,3)
                         (5,2,1)  (4,3,2)  (5,3,2)    (8,3)      (6,4,2)
                                  (5,3,1)  (5,4,1)    (9,2)      (6,5,1)
                                           (7,2,1)    (5,4,2)    (7,3,2)
                                           (4,3,2,1)  (6,4,1)    (7,4,1)
                                                      (7,3,1)    (8,3,1)
                                                      (5,3,2,1)  (9,2,1)
                                                                 (5,4,2,1)
		

Crossrefs

The dual strict complement is A097986.
The dual version is A341450.
The non-strict version is A343341 (Heinz numbers: A343337).
The strict complement is counted by A343347.
The case with smallest part not divisible by all the others is A343379.
The case with smallest part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A343379 Number of strict integer partitions of n with no part dividing or divisible by all the other parts.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 5, 3, 9, 9, 12, 12, 18, 18, 27, 27, 36, 41, 51, 51, 73, 80, 96, 105, 132, 137, 177, 188, 230, 253, 303, 320, 398, 431, 508, 550, 659, 705, 847, 913, 1063, 1165, 1359, 1452, 1716, 1856, 2134, 2329, 2688, 2894, 3345, 3622, 4133
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are either empty, or (1) have smallest part not dividing all the others and (2) have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(13) = 9 partitions (empty column indicated by dot):
  (3,2)  .  (4,3)  (5,3)  (5,4)    (6,4)    (6,5)    (7,5)    (7,6)
            (5,2)         (7,2)    (7,3)    (7,4)    (5,4,3)  (8,5)
                          (4,3,2)  (5,3,2)  (8,3)    (7,3,2)  (9,4)
                                            (9,2)             (10,3)
                                            (5,4,2)           (11,2)
                                                              (6,4,3)
                                                              (6,5,2)
                                                              (7,4,2)
                                                              (8,3,2)
		

Crossrefs

The first condition alone gives A341450.
The non-strict version is A343342 (Heinz numbers: A343338).
The second condition alone gives A343377.
The opposite version is A343378.
The half-opposite versions are A343380 and A343381.
The version for "or" instead of "and" is A343382.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

Formula

The Heinz numbers for the non-strict version are A343338 = A342193 /\ A343337.

A343346 Number of integer partitions of n that are empty, have smallest part not dividing all the others, or greatest part not divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 29, 36, 59, 80, 112, 150, 214, 271, 374, 476, 624, 800, 1045, 1298, 1669, 2088, 2628, 3258, 4087, 5000, 6219, 7602, 9331, 11368, 13877, 16754, 20368, 24536, 29580, 35468, 42624, 50845, 60827, 72357, 86078, 102100, 121101
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

First differs from A343345 at a(14) = 80, A343345(14) = 79.
Alternative name: Number of integer partitions of n with either no part dividing, or no part divisible by all the others.

Examples

			The a(0) = 1 through a(10) = 16 partitions (empty columns indicated by dots):
  ()  .  .  .  .  (32)  (321)  (43)    (53)     (54)      (64)
                               (52)    (332)    (72)      (73)
                               (322)   (431)    (432)     (433)
                               (3211)  (521)    (522)     (532)
                                       (3221)   (531)     (541)
                                       (32111)  (3222)    (721)
                                                (3321)    (3322)
                                                (4311)    (4321)
                                                (5211)    (5221)
                                                (32211)   (5311)
                                                (321111)  (32221)
                                                          (33211)
                                                          (43111)
                                                          (52111)
                                                          (322111)
                                                          (3211111)
		

Crossrefs

The complement is counted by A130714.
The first condition alone gives A338470.
The second condition alone gives A343341.
The "and" instead of "or" version is A343342.
The Heinz numbers of these partitions are A343343.
The strict case is A343382.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A343338 Numbers with no prime index dividing or divisible by all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299, 301
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2021

Keywords

Comments

Alternative name: 1 and numbers whose smallest prime index does not divide all the other prime indices, nor whose greatest prime index is divisible by all the other prime indices.
First differs from A302697 in having 91.
First differs from A337987 in having 91.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part not divisible by all the others and smallest part not dividing all the others (counted by A343342). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      203: {4,10}
     15: {2,3}      119: {4,7}        205: {3,13}
     33: {2,5}      123: {2,13}       207: {2,2,9}
     35: {3,4}      135: {2,2,2,3}    209: {5,8}
     45: {2,2,3}    141: {2,15}       215: {3,14}
     51: {2,7}      143: {5,6}        217: {4,11}
     55: {3,5}      145: {3,10}       219: {2,21}
     69: {2,9}      153: {2,2,7}      221: {6,7}
     75: {2,3,3}    155: {3,11}       225: {2,2,3,3}
     77: {4,5}      161: {4,9}        231: {2,4,5}
     85: {3,7}      165: {2,3,5}      245: {3,4,4}
     91: {4,6}      175: {3,3,4}      247: {6,8}
     93: {2,11}     177: {2,17}       249: {2,23}
     95: {3,8}      187: {5,7}        253: {5,9}
     99: {2,2,5}    201: {2,19}       255: {2,3,7}
For example, the prime indices of 975 are {2,3,3,6}, all of which divide 6, but not all of which are multiples of 2, so 975 is not in the sequence.
		

Crossrefs

The first condition alone gives A342193.
The second condition alone gives A343337.
The half-opposite versions are A343339 and A343340.
The partitions with these Heinz numbers are counted by A343342.
The opposite version is the complement of A343343.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&!And@@IntegerQ/@(p/Min@@p)]&]

Formula

Intersection of A342193 and A343337.
Showing 1-10 of 14 results. Next