cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060724 Number of subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 5, 6, 15, 8, 30, 10, 37, 23, 40, 14, 90, 16, 50, 48, 83, 20, 115, 22, 120, 60, 70, 26, 222, 45, 80, 76, 150, 32, 240, 34, 177, 84, 100, 80, 345, 40, 110, 96, 296, 44, 300, 46, 210, 184, 130, 50, 498, 75, 225, 120, 240, 56, 380, 112, 370, 132, 160, 62, 720, 64
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

Keywords

Examples

			a(2) = 5 because for the group C_2 X C_2 there are the following subgroups: the trivial subgroup, the whole group and the three subgroups of order 2.
		

Crossrefs

Programs

  • GAP
    List([1..50], n->Sum(ConjugacyClassesSubgroups( LatticeSubgroups( DirectProduct( List([n, n], k->CyclicGroup(k)) ))), Size)); # Andrew Howroyd, Jul 01 2018
    
  • Maple
    for n from 1 to 200 do: ans := 1: for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]: e := ifactors(n)[2][i][2]: ans := ans*(p^(e+2)+p^(e+1)+1+2*e-3*p-2*e*p)/(p-1)^2: od: printf(`%d,`,ans): od:
  • Mathematica
    ppCase[ {p_Integer, e_Integer} ] := (1-2*e*(p-1)+p*(p^e*(1+p)-3))/(p-1)^2; Table[ Times @@ (ppCase /@ FactorInteger[ i ]), {i, 1, 100} ]
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)*numdiv(d)^2)} \\ Andrew Howroyd, Jul 01 2018
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^2); \\ Seiichi Manyama, May 11 2021
    
  • Sage
    def A060724(n) :
        d = divisors(n); cp = cartesian_product([d, d])
        return reduce(lambda x,y: x+y, map(gcd, cp))
    [A060724(n) for n in (1..61)]   # Peter Luschny, Sep 10 2012

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). For a prime p: a(p) = p + 3.
a(p^e) = (p^(e+2)+p^(e+1)+1+2*e-3*p-2*e*p)/(p-1)^2.
a(n) = Sum_{i|n, j|n} gcd(i, j). - Vladeta Jovovic, Oct 28 2001
Also a(n) = Sum_{d|n} d*tau((n/d)^2). - Vladeta Jovovic, Apr 01 2002
Also a(n) = Sum_{d|n} phi(n/d)*tau(d)^2.
Inverse Moebius transform of A060648. - Vladeta Jovovic, Mar 31 2009
Dirichlet g.f. zeta^3(s)*zeta(s-1)/zeta(2*s). - R. J. Mathar, Mar 14 2011
a(n) = Sum_{d|n} psi(d)*tau(n/d), where psi is A001615 and tau is A000005. - Enrique Pérez Herrero, Feb 29 2012
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. - Vaclav Kotesovec, Jun 02 2019
a(n) = Sum_{k=1..n} tau(gcd(k,n))^2. - Seiichi Manyama, May 11 2021

Extensions

Formula and more terms from Vladeta Jovovic, Jul 06 2001

A344522 a(n) = Sum_{1 <= i, j, k <= n} gcd(i,j,k).

Original entry on oeis.org

1, 9, 30, 76, 141, 267, 400, 624, 885, 1249, 1590, 2208, 2689, 3411, 4248, 5248, 6081, 7485, 8530, 10248, 11889, 13687, 15228, 17988, 20053, 22569, 25242, 28588, 31053, 35463, 38284, 42540, 46581, 50893, 55362, 61824, 65857, 71247, 76884, 84388, 89349, 97881, 103342
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, gcd([i, j, k]))));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x))

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^3.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3.
a(n) ~ Pi^2 * n^3 / (6*zeta(3)). - Vaclav Kotesovec, May 23 2021

A344140 a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} gcd(x_1,x_2, ... ,x_n).

Original entry on oeis.org

1, 5, 10, 99, 36, 4290, 134, 72613, 20713, 1053700, 2058, 2194638822, 8204, 268550150, 1073938440, 156969213515, 131088, 101697785139535, 524306, 3657271905119820, 4398063288332, 17592232181770, 8388630, 4727105990672866963914, 847422827191, 4503600499785740
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^n &]; Array[a, 20] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^n);
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^n);

Formula

a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} n/lcm(x_1,x_2, ... ,x_n).
a(n) = Sum_{d|n} phi(n/d) * tau(d)^n.
If p is prime, a(p) = 2^p - 1 + p.
a(n) = Sum_{k=1..n} tau(gcd(k,n))^n.

A344138 a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n} gcd(x_1,x_2,x_3,x_4).

Original entry on oeis.org

1, 17, 18, 99, 20, 306, 22, 373, 119, 340, 26, 1782, 28, 374, 360, 1115, 32, 2023, 34, 1980, 396, 442, 38, 6714, 165, 476, 532, 2178, 44, 6120, 46, 2901, 468, 544, 440, 11781, 52, 578, 504, 7460, 56, 6732, 58, 2574, 2380, 646, 62, 20070, 219, 2805, 576, 2772, 68, 9044, 520, 8206, 612, 748, 74, 35640, 76
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^4 &];  Array[a, 50] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, gcd([i, j, k, l])))));
    
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, n/lcm([i, j, k, l])))));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^4);
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^4);

Formula

a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n} n/lcm(x_1,x_2,x_3,x_4).
a(n) = Sum_{d|n} phi(n/d) * tau(d)^4.
If p is prime, a(p) = 15 + p.
a(n) = Sum_{k=1..n} tau(gcd(k,n))^4.

A344139 a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} gcd(x_1,x_2,x_3,x_4,x_5).

Original entry on oeis.org

1, 33, 34, 277, 36, 1122, 38, 1335, 313, 1188, 42, 9418, 44, 1254, 1224, 4771, 48, 10329, 50, 9972, 1292, 1386, 54, 45390, 391, 1452, 1720, 10526, 60, 40392, 62, 14193, 1428, 1584, 1368, 86701, 68, 1650, 1496, 48060, 72, 42636, 74, 11634, 11268, 1782, 78, 162214, 477, 12903, 1632, 12188, 84
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^5 &]; Array[a, 20] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, gcd([i, j, k, l, m]))))));
    
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, n/lcm([i, j, k, l, m]))))));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^5);
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^5);

Formula

a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} n/lcm(x_1,x_2,x_3,x_4,x_5).
a(n) = Sum_{d|n} phi(n/d) * tau(d)^5.
If p is prime, a(p) = 31 + p.
a(n) = Sum_{k=1..n} tau(gcd(k,n))^5.

A344521 a(n) = Sum_{1 <= i <= j <= k <= n} gcd(i,j,k).

Original entry on oeis.org

1, 5, 13, 28, 47, 82, 116, 172, 235, 321, 397, 538, 641, 798, 980, 1192, 1361, 1655, 1863, 2218, 2553, 2912, 3210, 3766, 4171, 4661, 5183, 5840, 6303, 7168, 7694, 8510, 9283, 10095, 10951, 12190, 12929, 13932, 14990, 16414, 17315, 18925, 19913, 21438, 23055, 24500, 25674, 27862
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Column k=3 of A345229.
Partial sums of A309322.

Programs

  • Mathematica
    a[n_] := Sum[Sum[Sum[GCD[i, j, k], {i, 1, j}], {j, 1, k}], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 25 2021 *)
    nmax = 100; Rest[CoefficientList[Series[1/(1 - x)*Sum[EulerPhi[k]*x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 05 2021 *)
    Accumulate[Table[Sum[EulerPhi[n/d] * d*(d+1)/2, {d, Divisors[n]}], {n, 1, 100}]] (* Vaclav Kotesovec, Jun 05 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, gcd([i, j, k]))));

Formula

From Vaclav Kotesovec, Jun 05 2021: (Start)
a(n) ~ Pi^2 * n^3 / (36*zeta(3)).
G.f.: 1/(1-x) * Sum_{k>=1} phi(k) * x^k/(1 - x^k)^3, where phi is the Euler totient function (A000010).
a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * d*(d+1)/2. (End)
a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+2,3). - Seiichi Manyama, Sep 13 2024

A344133 a(n) = Sum_{i|n, j|n, k|n} i*j*k/gcd(i,j,k).

Original entry on oeis.org

1, 23, 46, 219, 116, 1058, 218, 1507, 883, 2668, 518, 10074, 716, 5014, 5336, 8819, 1208, 20309, 1502, 25404, 10028, 11914, 2186, 69322, 5691, 16468, 12628, 47742, 3452, 122728, 3938, 46995, 23828, 27784, 25288, 193377, 5588, 34546, 32936, 174812, 6848, 230644, 7526, 113442, 102428, 50278, 8978
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[i*j*k/GCD[i,j,k], {i, (d = Divisors[n])}, {j, d}, {k, d}]; Array[a, 50] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, i*j*k/gcd([i, j, k]))));

Formula

If p is prime, a(p) = 1 + 3*p + 4*p^2.

A344134 a(n) = Sum_{i|n, j|n, k|n} lcm(i,j,k).

Original entry on oeis.org

1, 15, 22, 91, 36, 330, 50, 387, 193, 540, 78, 2002, 92, 750, 792, 1363, 120, 2895, 134, 3276, 1100, 1170, 162, 8514, 511, 1380, 1192, 4550, 204, 11880, 218, 4275, 1716, 1800, 1800, 17563, 260, 2010, 2024, 13932, 288, 16500, 302, 7098, 6948, 2430, 330, 29986, 981, 7665, 2640, 8372, 372, 17880
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[n/GCD[i,j,k], {i, (d = Divisors[n])}, {j, d}, {k, d}]; Array[a, 50] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, lcm([i, j, k]))));
    
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, n/gcd([i, j, k]))));

Formula

a(n) = Sum_{i|n, j|n, k|n} n/gcd(i,j,k).
If p is prime, a(p) = 1 + 7*p.

A344135 a(n) = Sum_{i|n, j|n, k|n} i*j*k/lcm(i,j,k).

Original entry on oeis.org

1, 14, 22, 93, 44, 308, 74, 472, 259, 616, 158, 2046, 212, 1036, 968, 2123, 344, 3626, 422, 4092, 1628, 2212, 602, 10384, 1227, 2968, 2548, 6882, 932, 13552, 1058, 9006, 3476, 4816, 3256, 24087, 1484, 5908, 4664, 20768, 1808, 22792, 1982, 14694, 11396, 8428, 2354, 46706, 3843, 17178, 7568
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[i*j*k/LCM[i,j,k], {i, (d = Divisors[n])}, {j, d}, {k, d}]; Array[a, 50] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, i*j*k/lcm([i, j, k]))));

Formula

If p is prime, a(p) = 4 + 3*p + p^2.
Showing 1-9 of 9 results.