cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344372 a(n) = Sum_{k = 1..n} gcd(2*k, n).

Original entry on oeis.org

1, 4, 5, 12, 9, 20, 13, 32, 21, 36, 21, 60, 25, 52, 45, 80, 33, 84, 37, 108, 65, 84, 45, 160, 65, 100, 81, 156, 57, 180, 61, 192, 105, 132, 117, 252, 73, 148, 125, 288, 81, 260, 85, 252, 189, 180, 93, 400, 133, 260, 165, 300, 105, 324, 189, 416, 185, 228, 117, 540, 121, 244, 273
Offset: 1

Views

Author

Max Alekseyev, May 16 2021

Keywords

Comments

For all n, a(n) >= 2*n - 1, where the equality holds if n is 1 or an odd prime.
a(n) equals the number of solutions to the congruence 2*x*y == 0 (mod n) for 1 <= x, y <= n. - Peter Bala, Jan 11 2024

Examples

			a(6) = 20: the 20 solutions to the congruence 2*x*y == 0 (mod 6) for 1 <= x, y <= 6 are the pairs (x, y) = (k, 6) for 1 <= k <= 6, the pairs (6, k) for 1 <= k <= 5, the pairs (3, k) for 1 <= k <= 5 and the pairs (1, 3), (2, 3), (4, 3) and (5, 3). - _Peter Bala_, Jan 11 2024
		

Crossrefs

Negated bisection of A199084.

Programs

  • Maple
    seq(add((-1)^k*gcd(k, 2*n), k = 1..2*n), n = 1..70);
    # alternative faster program for large n
    with(numtheory): seq(add(gcd(2,d)*phi(d)*n/d, d in divisors(n)), n = 1..70); # Peter Bala, Jan 08 2024
  • Mathematica
    f[p_, e_] := (e + 1)*p^e - e*p^(e - 1); f[2, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
    Table[Sum[GCD[2*k, n], {k, 1, n}], {n, 1, 60}] (* or *)
    Table[Sum[(-1)^k * GCD[k, 2*n], {k, 1, 2*n}], {n, 1, 60}] (* Vaclav Kotesovec, Jan 13 2024 *)
  • PARI
    { A344372(n) = my(f=factor(n)); prod(i=1,#f~, (f[i,2]+1)*f[i,1]^f[i,2] - if(f[i,1]>2,f[i,2]*f[i, 1]^(f[i,2]-1)) ); }
    
  • PARI
    a(n) = sum(k=1, 2*n, (-1)^k*gcd(k,2*n)); \\ Michel Marcus, May 17 2021

Formula

a(n) = Sum_{k = 1..2*n} (-1)^k * gcd(k,2*n).
a(n) is multiplicative with a(2^d) = (d+1)*2^d, and a(p^d) = (d+1)*p^d - d*p^(d-1) for an odd prime p, d >= 1.
a(n) = A344371(2*n) = -A199084(2*n) = 2*n - A106475(n-1).
a(n) = A018804(n) if n is odd, 4*A018804(n/2) if n is even. - Sebastian Karlsson, Aug 31 2021
From Peter Bala, Jan 11 2023: (Start)
a(n) = Sum_{d divides n} phi(2*d)*n/d, where phi(n) = A000010(n).
a(n) = - A332794(2*n); a(2*n+1) = A368736(2*n+1).
Dirichlet g.f.: 1/(1 - 1/2^s) * zeta(s-1)^2/zeta(s).
Define D(n) = Sum_{d divides n} a(d). Then
D(2*n+1) = (2*n + 1)*tau(2*n+1), where tau(n) = A000005(n), the number of divisors of n.
The sequence {(1/4)*( D(2*n) - D(n) ) : n >= 1} begins {1, 3, 6, 8, 10, 18, 14, 20, 27, 30, 22, 48, 26, 42, 60, 48, 34, 81, 38, 80, 84, 66, ...} and appears to be multiplicative. (End)
Sum_{k=1..n} a(k) ~ 4*n^2 * (log(n) - 1/2 + 2*gamma - log(2)/3 - 6*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 12 2024

Extensions

New name according to the formula by Peter Bala from Vaclav Kotesovec, Jan 13 2024

A199084 a(n) = Sum_{k=1..n} (-1)^(k+1) gcd(k,n).

Original entry on oeis.org

1, -1, 3, -4, 5, -5, 7, -12, 9, -9, 11, -20, 13, -13, 15, -32, 17, -21, 19, -36, 21, -21, 23, -60, 25, -25, 27, -52, 29, -45, 31, -80, 33, -33, 35, -84, 37, -37, 39, -108, 41, -65, 43, -84, 45, -45, 47, -160, 49, -65, 51, -100, 53, -81, 55, -156, 57
Offset: 1

Views

Author

R. J. Mathar, Nov 02 2011

Keywords

Comments

The alternating sum analog of A018804.
a(2n) <= -(2n-1) (cf. A344372). - Max Alekseyev, May 16 2021

Crossrefs

Programs

  • Maple
    A199084 := proc(n)
            add((-1)^(k-1)* igcd(k,n),k=1..n) ;
    end proc:
    seq(A199084(n),n=1..80) ;
  • Mathematica
    altGCDSum[n_] := Sum[(-1)^(i + 1)GCD[i, n], {i, n}]; Table[altGCDSum[n], {n, 50}] (* Alonso del Arte, Nov 02 2011 *)
    Total/@Table[(-1)^(k+1) GCD[k,n],{n,60},{k,n}] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*gcd(k,n)); \\ Michel Marcus, Jun 28 2023

Formula

a(2n+1) = 2n+1. - Seiichi Manyama, Dec 09 2016
a(n) = (-1)^(n+1)*A344371(n) = A344373(n) - (-1)^n*n. - Max Alekseyev, May 16 2021
a(2n) = -A344372(n). - Max Alekseyev, May 16 2021
Sum_{k=1..n} a(k) ~ (n^2/Pi^2) * (-log(n) - 2*gamma + 1/2 + 4*log(2)/3 + Pi^2/4 + zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024

A106475 An alternating sum of greatest common divisors.

Original entry on oeis.org

1, 0, 1, -4, 1, -8, 1, -16, -3, -16, 1, -36, 1, -24, -15, -48, 1, -48, 1, -68, -23, -40, 1, -112, -15, -48, -27, -100, 1, -120, 1, -128, -39, -64, -47, -180, 1, -72, -47, -208, 1, -176, 1, -164, -99, -88, 1, -304, -35, -160, -63, -196, 1, -216, -79, -304, -71, -112, 1, -420, 1, -120, -147, -320, -95, -288, 1, -260, -87
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

With interpolated 0's, this is Sum_{k=0..n} gcd(n-k+1,k+1)*(-1)^k.

Crossrefs

Negated bisection of A344373.

Programs

Formula

a(n) = Sum_{k=0..2*n} gcd(2*n-k+1, k+1)*(-1)^k.
a(n) = 2(n+1) - A344371(2(n+1)) = 2(n+1) - A344372(n+1) = 2(n+1) + A199084(2(n+1)). - Max Alekseyev, May 16 2021
Sum_{k=1..n} a(k) ~ n^2 * (1 - (4/Pi^2)*(log(n) + 2*gamma - 1/2 - log(2)/3 - zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024

Extensions

More terms from Antti Karttunen, Mar 30 2021

A344373 a(n) = Sum_{k=1..n-1} (-1)^k gcd(k, n).

Original entry on oeis.org

0, -1, 0, 0, 0, -1, 0, 4, 0, -1, 0, 8, 0, -1, 0, 16, 0, 3, 0, 16, 0, -1, 0, 36, 0, -1, 0, 24, 0, 15, 0, 48, 0, -1, 0, 48, 0, -1, 0, 68, 0, 23, 0, 40, 0, -1, 0, 112, 0, 15, 0, 48, 0, 27, 0, 100, 0, -1, 0, 120, 0, -1, 0, 128, 0, 39, 0, 64, 0, 47, 0, 180, 0, -1, 0, 72, 0, 47, 0, 208, 0, -1, 0, 176, 0, -1, 0, 164, 0, 99
Offset: 1

Views

Author

Max Alekseyev, May 16 2021

Keywords

Comments

The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception.
For all n, a(n) >= -1. Equality holds for n = 2 and n = 2*p for an odd prime p.

Crossrefs

Programs

Formula

a(n) = -A199084(n) - (-1)^n*n = (-1)^n * (A344371(n) - n).
a(2*n+1) = 0.
a(2*n) = A344372(n) - 2*n = -A106475(n-1).
Sum_{k=1..n} a(k) ~ (n^2/4) * ((4/Pi^2)*(log(n) + 2*gamma - 1/2 - 4*log(2)/3 - zeta'(2)/zeta(2)) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Mar 30 2024

Extensions

More terms from Antti Karttunen, May 16 2021

A368624 a(n) = Sum_{k = 1..n} (-1)^(n+k) * gcd(2*k, n).

Original entry on oeis.org

1, 0, 3, 4, 5, 0, 7, 16, 9, 0, 11, 20, 13, 0, 15, 48, 17, 0, 19, 36, 21, 0, 23, 80, 25, 0, 27, 52, 29, 0, 31, 128, 33, 0, 35, 84, 37, 0, 39, 144, 41, 0, 43, 84, 45, 0, 47, 240, 49, 0, 51, 100, 53, 0, 55, 208, 57, 0, 59, 180, 61, 0, 63, 320, 65, 0, 67, 132, 69, 0
Offset: 1

Views

Author

Peter Bala, Jan 01 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(add((-1)^(n+k) * gcd(2*k, n), k = 1..n), n = 1..70)
  • Mathematica
    Table[Sum[(-1)^(n+k) GCD[2k,n],{k,n}],{n,70}] (* Harvey P. Dale, Jun 16 2024 *)

Formula

a(2*n+1) = 2*n + 1; a(4*n+2) = 0; a(4*n) = 4*A344372(n) = 4*Sum_{k = 1..n} gcd(2*k, n).
Showing 1-5 of 5 results.