cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A344905 Decimal expansion of the solution to x^x = sqrt(2).

Original entry on oeis.org

1, 3, 0, 4, 3, 5, 1, 1, 7, 8, 9, 0, 1, 0, 3, 6, 5, 3, 3, 6, 4, 7, 2, 0, 1, 2, 3, 1, 4, 8, 6, 2, 3, 4, 0, 7, 5, 0, 3, 5, 5, 3, 3, 8, 2, 9, 9, 8, 9, 0, 2, 3, 1, 7, 9, 8, 1, 7, 3, 3, 2, 0, 9, 5, 6, 8, 8, 9, 1, 5, 0, 9, 3, 2, 8, 7, 5, 7, 1, 2, 2, 1, 0, 0, 0, 4, 8
Offset: 1

Views

Author

Christoph B. Kassir, Jun 01 2021

Keywords

Examples

			1.304351178901036533647201231486234...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Sqrt[2]]/ProductLog[Log[Sqrt[2]]], 10, 100][[1]] (* Amiram Eldar, Jun 02 2021 *)
    RealDigits[x/.FindRoot[x^x==Sqrt[2],{x,1},WorkingPrecision-> 120],10,120][[1]] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    solve(x=1,2,x^x-sqrt(2)) \\ Hugo Pfoertner, Jun 02 2021

Formula

Equals log(2)/(2*LambertW(log(2)/2)). - Alois P. Heinz, Jun 02 2021
Equals 1/A073084. - Jason Bard, Aug 20 2025