cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345506 Numbers that are the sum of seven cubes in ten or more ways.

Original entry on oeis.org

1704, 1711, 1774, 1800, 1837, 1863, 1889, 1893, 1926, 1938, 1963, 1982, 1989, 2008, 2015, 2019, 2045, 2052, 2053, 2059, 2078, 2097, 2106, 2113, 2143, 2161, 2169, 2171, 2176, 2197, 2204, 2217, 2223, 2224, 2227, 2230, 2234, 2241, 2250, 2260, 2266, 2267, 2276
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1711 is a term because 1711 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345781 Numbers that are the sum of seven cubes in exactly nine ways.

Original entry on oeis.org

1496, 1648, 1720, 1737, 1772, 1781, 1802, 1835, 1844, 1882, 1891, 1898, 1900, 1907, 1912, 1919, 1945, 1952, 1954, 1961, 1996, 2000, 2012, 2026, 2071, 2080, 2098, 2107, 2110, 2115, 2116, 2132, 2134, 2136, 2139, 2150, 2152, 2168, 2178, 2185, 2187, 2195, 2205
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345527 at term 3 because 1704 = 1^3 + 1^3 + 1^3 + 3^3 + 6^3 + 9^3 + 9^3 = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 8^3 + 10^3 = 1^3 + 1^3 + 2^3 + 2^3 + 7^3 + 7^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 6^3 + 11^3 = 1^3 + 2^3 + 4^3 + 6^3 + 7^3 + 7^3 + 9^3 = 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 6^3 + 11^3 = 2^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 7^3 + 10^3 = 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3 + 9^3 = 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3.
Likely finite.

Examples

			1648 is a term because 1648 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345832 Numbers that are the sum of seven fourth powers in exactly ten ways.

Original entry on oeis.org

31251, 44547, 45827, 45892, 47667, 47971, 49572, 51092, 53316, 53476, 54531, 54596, 54756, 57411, 58276, 58660, 59781, 59811, 59827, 59861, 59876, 59892, 61076, 64581, 65876, 65891, 66356, 66596, 66676, 67716, 67876, 68131, 68322, 68772, 69171, 69667, 70116
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345576 at term 5 because 45907 = 1^4 + 1^4 + 3^4 + 4^4 + 8^4 + 12^4 + 12^4 = 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 + 13^4 = 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 + 13^4 = 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 + 13^4 = 2^4 + 2^4 + 4^4 + 7^4 + 7^4 + 7^4 + 14^4 = 2^4 + 3^4 + 6^4 + 6^4 + 7^4 + 7^4 + 14^4 = 2^4 + 4^4 + 6^4 + 7^4 + 9^4 + 11^4 + 12^4 = 2^4 + 5^4 + 5^4 + 10^4 + 10^4 + 10^4 + 11^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 14^4 = 3^4 + 6^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.

Examples

			44547 is a term because 44547 = 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 11^4 + 13^4 = 1^4 + 2^4 + 2^4 + 6^4 + 7^4 + 7^4 + 14^4 = 1^4 + 2^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 1^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4 = 2^4 + 2^4 + 8^4 + 9^4 + 9^4 + 9^4 + 12^4 = 2^4 + 4^4 + 6^4 + 6^4 + 9^4 + 9^4 + 13^4 = 2^4 + 4^4 + 7^4 + 7^4 + 8^4 + 11^4 + 12^4 = 3^4 + 3^4 + 4^4 + 4^4 + 7^4 + 12^4 + 12^4 = 3^4 + 6^4 + 6^4 + 7^4 + 8^4 + 11^4 + 12^4 = 4^4 + 4^4 + 8^4 + 8^4 + 9^4 + 11^4 + 11^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345772 Numbers that are the sum of six cubes in exactly ten ways.

Original entry on oeis.org

3215, 3267, 3313, 3339, 3374, 3465, 3493, 3528, 3547, 3584, 3645, 3654, 3698, 3736, 3745, 3752, 3754, 3780, 3789, 3843, 3869, 3878, 3880, 3888, 3906, 3915, 3923, 3950, 3995, 4004, 4014, 4041, 4067, 4122, 4148, 4211, 4212, 4214, 4265, 4266, 4268, 4338, 4349
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345519 at term 1 because 3104 = 1^3 + 2^3 + 7^3 + 8^3 + 8^3 + 12^3 = 1^3 + 5^3 + 5^3 + 5^3 + 10^3 + 12^3 = 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 14^3 = 2^3 + 3^3 + 4^3 + 7^3 + 11^3 + 11^3 = 2^3 + 3^3 + 5^3 + 6^3 + 10^3 + 12^3 = 2^3 + 7^3 + 8^3 + 8^3 + 9^3 + 10^3 = 3^3 + 3^3 + 5^3 + 6^3 + 8^3 + 13^3 = 4^3 + 5^3 + 7^3 + 8^3 + 9^3 + 11^3 = 5^3 + 5^3 + 5^3 + 9^3 + 10^3 + 10^3 = 5^3 + 6^3 + 6^3 + 6^3 + 10^3 + 11^3 = 6^3 + 6^3 + 6^3 + 6^3 + 8^3 + 12^3.

Examples

			3215 is a term because 3215 = 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 13^3 = 1^3 + 1^3 + 2^3 + 2^3 + 9^3 + 12^3 = 1^3 + 1^3 + 3^3 + 8^3 + 8^3 + 11^3 = 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 12^3 = 1^3 + 3^3 + 3^3 + 3^3 + 10^3 + 11^3 = 1^3 + 3^3 + 8^3 + 8^3 + 8^3 + 9^3 = 2^3 + 3^3 + 6^3 + 6^3 + 8^3 + 11^3 = 3^3 + 3^3 + 3^3 + 8^3 + 9^3 + 10^3 = 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 12^3 = 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 10^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345792 Numbers that are the sum of eight cubes in exactly ten ways.

Original entry on oeis.org

1185, 1243, 1288, 1295, 1299, 1386, 1397, 1400, 1412, 1423, 1448, 1449, 1451, 1458, 1460, 1464, 1467, 1475, 1477, 1501, 1503, 1505, 1512, 1513, 1516, 1539, 1540, 1541, 1553, 1558, 1559, 1568, 1577, 1578, 1586, 1588, 1591, 1592, 1594, 1595, 1596, 1600, 1608
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345540 at term 3 because 1262 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 10^3 = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 6^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 7^3 + 7^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 6^3 + 9^3 = 1^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 10^3 = 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 9^3.
Likely finite.

Examples

			1243 is a term because 1243 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 8^3 = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.