cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345527 Numbers that are the sum of seven cubes in nine or more ways.

Original entry on oeis.org

1496, 1648, 1704, 1711, 1720, 1737, 1772, 1774, 1781, 1800, 1802, 1835, 1837, 1844, 1863, 1882, 1889, 1891, 1893, 1898, 1900, 1907, 1912, 1919, 1926, 1938, 1945, 1952, 1954, 1961, 1963, 1982, 1989, 1996, 2000, 2008, 2012, 2015, 2019, 2026, 2045, 2052, 2053
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1648 is a term because 1648 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A345831 Numbers that are the sum of seven fourth powers in exactly nine ways.

Original entry on oeis.org

19491, 21267, 21332, 23652, 35427, 36052, 37812, 38067, 39891, 40356, 41732, 41747, 43267, 43876, 43891, 43956, 44131, 44196, 44532, 44612, 45156, 45171, 45411, 45651, 45652, 45891, 46276, 46451, 46516, 47427, 48036, 48052, 48532, 48707, 49747, 49956, 49987
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345575 at term 5 because 31251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 10^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 + 11^4 = 1^4 + 4^4 + 4^4 + 4^4 + 5^4 + 6^4 + 13^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 10^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 + 11^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 11^4.

Examples

			21267 is a term because 21267 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 2^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 11^4 = 3^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345771 Numbers that are the sum of six cubes in exactly nine ways.

Original entry on oeis.org

2438, 2457, 2494, 2555, 2593, 2709, 2772, 2889, 2942, 2980, 3033, 3043, 3096, 3160, 3195, 3241, 3250, 3257, 3276, 3402, 3427, 3437, 3467, 3556, 3582, 3592, 3608, 3609, 3617, 3672, 3735, 3825, 3850, 3852, 3871, 3924, 3934, 3962, 3976, 3979, 3996, 3997, 4006
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345518 at term 14 because 3104 = 1^3 + 2^3 + 7^3 + 8^3 + 8^3 + 12^3 = 1^3 + 5^3 + 5^3 + 5^3 + 10^3 + 12^3 = 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 14^3 = 2^3 + 3^3 + 4^3 + 7^3 + 11^3 + 11^3 = 2^3 + 3^3 + 5^3 + 6^3 + 10^3 + 12^3 = 2^3 + 7^3 + 8^3 + 8^3 + 9^3 + 10^3 = 3^3 + 3^3 + 5^3 + 6^3 + 8^3 + 13^3 = 4^3 + 5^3 + 7^3 + 8^3 + 9^3 + 11^3 = 5^3 + 5^3 + 5^3 + 9^3 + 10^3 + 10^3 = 5^3 + 6^3 + 6^3 + 6^3 + 10^3 + 11^3 = 6^3 + 6^3 + 6^3 + 6^3 + 8^3 + 12^3.

Examples

			2457 is a term because 2457 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 12^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 12^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 11^3 = 1^3 + 5^3 + 5^3 + 7^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 11^3 = 2^3 + 3^3 + 3^3 + 3^3 + 9^3 + 10^3 = 2^3 + 5^3 + 5^3 + 6^3 + 6^3 + 10^3 = 3^3 + 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 3^3 + 4^3 + 7^3 + 8^3 + 9^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345780 Numbers that are the sum of seven cubes in exactly eight ways.

Original entry on oeis.org

1385, 1515, 1552, 1557, 1585, 1587, 1603, 1613, 1622, 1655, 1665, 1674, 1681, 1718, 1719, 1739, 1741, 1746, 1753, 1755, 1765, 1767, 1782, 1793, 1805, 1809, 1811, 1818, 1819, 1826, 1828, 1830, 1833, 1838, 1856, 1870, 1873, 1881, 1901, 1905, 1931, 1935, 1937
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345526 at term 2 because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 9^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 11^3 = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 8^3 + 9^3 = 1^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 + 9^3 = 1^3 + 5^3 + 5^3 + 6^3 + 7^3 + 7^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 11^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 + 10^3 = 2^3 + 3^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3 = 4^3 + 4^3 + 4^3 + 4^3 + 6^3 + 8^3 + 8^3.
Likely finite.

Examples

			1496 is a term because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A345791 Numbers that are the sum of eight cubes in exactly nine ways.

Original entry on oeis.org

984, 1080, 1136, 1171, 1192, 1197, 1204, 1223, 1269, 1273, 1280, 1306, 1318, 1325, 1332, 1333, 1337, 1344, 1356, 1360, 1369, 1370, 1374, 1377, 1379, 1404, 1406, 1415, 1416, 1422, 1425, 1430, 1432, 1438, 1442, 1444, 1445, 1456, 1476, 1481, 1486, 1488, 1494
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345539 at term 5 because 1185 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 6^3 + 8^3 = 1^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 9^3 = 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3 = 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 9^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 8^3 + 8^3 = 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 + 7^3 + 7^3.
Likely finite.

Examples

			1080 is a term because 1080 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345782 Numbers that are the sum of seven cubes in exactly ten ways.

Original entry on oeis.org

1704, 1711, 1800, 1837, 1863, 1926, 1938, 1963, 2008, 2019, 2045, 2053, 2059, 2078, 2113, 2143, 2161, 2171, 2176, 2217, 2223, 2250, 2260, 2266, 2276, 2286, 2295, 2304, 2313, 2315, 2331, 2350, 2354, 2357, 2374, 2404, 2412, 2413, 2442, 2444, 2446, 2447, 2511
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345506 at term 3 because 1774 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 12^3 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 6^3 + 11^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 9^3 + 10^3 = 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 9^3 + 9^3 = 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 9^3 + 9^3 = 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 8^3 + 10^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 11^3 = 2^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 + 10^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 11^3 = 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 9^3 = 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 9^3.
Likely finite.

Examples

			1711 is a term because 1711 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.