cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345844 Numbers that are the sum of nine fourth powers in exactly two ways.

Original entry on oeis.org

264, 279, 294, 309, 324, 339, 344, 359, 374, 389, 404, 424, 439, 454, 469, 504, 549, 564, 579, 584, 614, 629, 644, 664, 679, 694, 709, 759, 789, 804, 819, 839, 854, 869, 884, 888, 903, 918, 933, 934, 948, 949, 968, 983, 998, 1013, 1014, 1029, 1044, 1048, 1059
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345586 at term 17 because 519 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.

Examples

			279 is a term because 279 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345541 Numbers that are the sum of nine cubes in two or more ways.

Original entry on oeis.org

72, 133, 140, 147, 159, 161, 166, 168, 175, 182, 185, 187, 189, 194, 196, 198, 201, 203, 205, 208, 213, 217, 220, 222, 224, 227, 231, 238, 239, 243, 245, 246, 250, 252, 257, 259, 261, 264, 265, 266, 271, 273, 276, 278, 280, 283, 285, 287, 289, 290, 292, 294
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			133 is a term because 133 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345784 Numbers that are the sum of eight cubes in exactly two ways.

Original entry on oeis.org

132, 139, 158, 160, 167, 174, 181, 186, 193, 195, 197, 200, 212, 216, 219, 238, 244, 251, 258, 265, 272, 277, 288, 296, 298, 300, 301, 303, 307, 314, 315, 317, 321, 322, 327, 328, 329, 333, 334, 336, 338, 340, 341, 348, 350, 352, 356, 359, 360, 361, 363, 366
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345532 at term 16 because 223 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3.
Likely finite.

Examples

			139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345795 Numbers that are the sum of nine cubes in exactly three ways.

Original entry on oeis.org

231, 238, 245, 250, 259, 271, 276, 278, 280, 285, 287, 290, 292, 294, 297, 299, 301, 302, 309, 311, 313, 315, 316, 318, 322, 327, 334, 335, 337, 339, 341, 346, 350, 353, 357, 362, 365, 379, 386, 387, 388, 391, 393, 394, 395, 397, 398, 405, 412, 418, 420, 421
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345542 at term 1 because 224 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
Likely finite.

Examples

			231 is a term because 231 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345804 Numbers that are the sum of ten cubes in exactly two ways.

Original entry on oeis.org

73, 80, 99, 134, 136, 141, 148, 155, 160, 162, 167, 169, 174, 176, 183, 186, 188, 190, 192, 193, 195, 199, 202, 204, 206, 209, 211, 212, 213, 214, 216, 218, 221, 223, 228, 230, 235, 240, 244, 247, 249, 254, 262, 266, 269, 270, 273, 274, 290, 292, 297, 304
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345550 at term 22 because 197 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3.
Likely finite.

Examples

			80 is a term because 80 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345793 Numbers that are the sum of nine cubes in exactly one way.

Original entry on oeis.org

9, 16, 23, 30, 35, 37, 42, 44, 49, 51, 56, 58, 61, 63, 65, 68, 70, 75, 77, 79, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110, 112, 113, 114, 115, 119, 120, 121, 122, 124, 126, 127, 128, 129, 131, 134, 135, 138, 139, 141, 142, 145
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003332 at term 18 because 72 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^2 + 1^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3.
Likely finite.

Examples

			16 is a term because 16 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.