cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A345558 Numbers that are the sum of ten cubes in ten or more ways.

Original entry on oeis.org

721, 754, 756, 771, 782, 792, 797, 806, 808, 819, 832, 834, 845, 847, 848, 850, 860, 862, 867, 869, 871, 874, 876, 877, 878, 881, 884, 886, 888, 893, 895, 897, 902, 903, 904, 906, 907, 909, 910, 911, 912, 914, 916, 917, 918, 919, 921, 923, 925, 929, 930, 932
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			754 is a term because 754 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345802 Numbers that are the sum of nine cubes in exactly ten ways.

Original entry on oeis.org

966, 971, 978, 1004, 1018, 1022, 1055, 1056, 1062, 1063, 1074, 1076, 1078, 1085, 1088, 1092, 1093, 1095, 1098, 1100, 1104, 1111, 1112, 1114, 1117, 1119, 1124, 1130, 1134, 1135, 1139, 1140, 1142, 1147, 1149, 1153, 1160, 1167, 1168, 1170, 1180, 1181, 1182, 1183
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345549 at term 4 because 985 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 9^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 6^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 9^3 = 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3 = 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3.
Likely finite.

Examples

			971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345811 Numbers that are the sum of ten cubes in exactly nine ways.

Original entry on oeis.org

632, 651, 658, 688, 695, 714, 736, 740, 745, 752, 773, 778, 780, 790, 795, 799, 801, 812, 813, 815, 816, 818, 821, 823, 825, 841, 843, 849, 851, 852, 853, 855, 856, 857, 858, 864, 866, 873, 880, 882, 883, 885, 890, 891, 892, 899, 905, 908, 913, 922, 924, 926
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345557 at term 7 because 721 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
Likely finite.

Examples

			651 is a term because 651 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345862 Numbers that are the sum of ten fourth powers in exactly ten ways.

Original entry on oeis.org

6885, 7990, 8035, 8165, 8275, 8340, 8515, 8565, 8580, 9140, 9235, 9285, 9445, 9495, 9510, 9540, 9620, 9670, 9795, 9830, 9860, 9924, 9925, 9990, 10005, 10164, 10294, 10340, 10374, 10404, 10420, 10515, 10534, 10884, 10950, 10980, 11075, 11125, 11190, 11220
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345603 at term 4 because 8100 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 6^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			7990 is a term because 7990 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 1^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4 = 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-4 of 4 results.