A345852 Numbers that are the sum of nine fourth powers in exactly ten ways.
9299, 12708, 12948, 13269, 13349, 13524, 13589, 13764, 13829, 13893, 14133, 14228, 14468, 14564, 14869, 14934, 14964, 15014, 15094, 15109, 15174, 15189, 15333, 15428, 15429, 15524, 15588, 15604, 15653, 16214, 16229, 16469, 16564, 16644, 16773, 16883, 16948
Offset: 1
Keywords
Examples
12708 is a term because 12708 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 7^4 + 8^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 9): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 10]) for x in range(len(rets)): print(rets[x])
Comments