cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345841 Numbers that are the sum of eight fourth powers in exactly nine ways.

Original entry on oeis.org

15427, 16692, 17348, 17493, 18052, 18227, 19267, 19412, 19572, 19748, 20852, 21443, 21493, 21637, 21652, 21653, 21827, 21877, 21972, 22037, 22212, 22388, 22501, 22548, 22868, 22932, 23107, 23412, 23413, 23428, 23828, 23893, 23972, 24037, 24131, 24212, 24517
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345584 at term 5 because 17972 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 + 10^4 = 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 5^4 + 7^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 6^4 + 11^4 = 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 + 10^4 = 1^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 10^4 = 1^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 8^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 9^4 + 9^4 = 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4.

Examples

			16692 is a term because 16692 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 10^4 = 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 9^4 + 9^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345585 Numbers that are the sum of eight fourth powers in ten or more ways.

Original entry on oeis.org

17972, 17987, 19492, 19507, 19747, 20116, 20787, 21268, 21283, 21333, 21348, 21413, 21508, 21523, 21588, 21892, 21957, 22067, 22132, 22563, 22628, 23172, 23237, 23252, 23587, 23588, 23603, 23653, 23668, 23733, 23843, 23908, 24277, 24452, 24802, 24948, 25363
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			17987 is a term because 17987 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 5^4 + 7^4 + 11^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 + 10^4 = 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 10^4 = 2^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 6^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A345832 Numbers that are the sum of seven fourth powers in exactly ten ways.

Original entry on oeis.org

31251, 44547, 45827, 45892, 47667, 47971, 49572, 51092, 53316, 53476, 54531, 54596, 54756, 57411, 58276, 58660, 59781, 59811, 59827, 59861, 59876, 59892, 61076, 64581, 65876, 65891, 66356, 66596, 66676, 67716, 67876, 68131, 68322, 68772, 69171, 69667, 70116
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345576 at term 5 because 45907 = 1^4 + 1^4 + 3^4 + 4^4 + 8^4 + 12^4 + 12^4 = 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 + 13^4 = 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 + 13^4 = 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 + 13^4 = 2^4 + 2^4 + 4^4 + 7^4 + 7^4 + 7^4 + 14^4 = 2^4 + 3^4 + 6^4 + 6^4 + 7^4 + 7^4 + 14^4 = 2^4 + 4^4 + 6^4 + 7^4 + 9^4 + 11^4 + 12^4 = 2^4 + 5^4 + 5^4 + 10^4 + 10^4 + 10^4 + 11^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 14^4 = 3^4 + 6^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.

Examples

			44547 is a term because 44547 = 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 11^4 + 13^4 = 1^4 + 2^4 + 2^4 + 6^4 + 7^4 + 7^4 + 14^4 = 1^4 + 2^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 1^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4 = 2^4 + 2^4 + 8^4 + 9^4 + 9^4 + 9^4 + 12^4 = 2^4 + 4^4 + 6^4 + 6^4 + 9^4 + 9^4 + 13^4 = 2^4 + 4^4 + 7^4 + 7^4 + 8^4 + 11^4 + 12^4 = 3^4 + 3^4 + 4^4 + 4^4 + 7^4 + 12^4 + 12^4 = 3^4 + 6^4 + 6^4 + 7^4 + 8^4 + 11^4 + 12^4 = 4^4 + 4^4 + 8^4 + 8^4 + 9^4 + 11^4 + 11^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345852 Numbers that are the sum of nine fourth powers in exactly ten ways.

Original entry on oeis.org

9299, 12708, 12948, 13269, 13349, 13524, 13589, 13764, 13829, 13893, 14133, 14228, 14468, 14564, 14869, 14934, 14964, 15014, 15094, 15109, 15174, 15189, 15333, 15428, 15429, 15524, 15588, 15604, 15653, 16214, 16229, 16469, 16564, 16644, 16773, 16883, 16948
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345594 at term 15 because 14804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 + 9^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 11^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 8^4 + 8^4 = 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 9^4 = 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 9^4.

Examples

			12708 is a term because 12708 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 7^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A345792 Numbers that are the sum of eight cubes in exactly ten ways.

Original entry on oeis.org

1185, 1243, 1288, 1295, 1299, 1386, 1397, 1400, 1412, 1423, 1448, 1449, 1451, 1458, 1460, 1464, 1467, 1475, 1477, 1501, 1503, 1505, 1512, 1513, 1516, 1539, 1540, 1541, 1553, 1558, 1559, 1568, 1577, 1578, 1586, 1588, 1591, 1592, 1594, 1595, 1596, 1600, 1608
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345540 at term 3 because 1262 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 10^3 = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 6^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 7^3 + 7^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 6^3 + 9^3 = 1^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 10^3 = 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 9^3.
Likely finite.

Examples

			1243 is a term because 1243 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 8^3 = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A346335 Numbers that are the sum of eight fifth powers in exactly ten ways.

Original entry on oeis.org

15539667, 22932525, 24393600, 24650406, 24952961, 24953742, 25142513, 26001294, 27988486, 28609075, 29309819, 31794336, 32223105, 32527286, 32610600, 32807777, 32890541, 32998317, 33015125, 33187858, 33361339, 33550572, 33659175, 33782597, 34029369, 34073650
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345618 at term 7 because 25054306 = 1^5 + 1^5 + 2^5 + 6^5 + 12^5 + 12^5 + 12^5 + 30^5 = 5^5 + 6^5 + 6^5 + 12^5 + 14^5 + 14^5 + 20^5 + 29^5 = 4^5 + 5^5 + 8^5 + 11^5 + 11^5 + 16^5 + 23^5 + 28^5 = 4^5 + 5^5 + 5^5 + 7^5 + 17^5 + 20^5 + 20^5 + 28^5 = 2^5 + 6^5 + 9^5 + 9^5 + 9^5 + 21^5 + 23^5 + 27^5 = 1^5 + 4^5 + 4^5 + 9^5 + 19^5 + 21^5 + 21^5 + 27^5 = 3^5 + 5^5 + 6^5 + 13^5 + 13^5 + 14^5 + 26^5 + 26^5 = 1^5 + 3^5 + 10^5 + 10^5 + 10^5 + 23^5 + 23^5 + 26^5 = 9^5 + 10^5 + 14^5 + 17^5 + 17^5 + 20^5 + 23^5 + 26^5 = 7^5 + 12^5 + 15^5 + 15^5 + 19^5 + 19^5 + 23^5 + 26^5 = 3^5 + 4^5 + 4^5 + 7^5 + 17^5 + 21^5 + 25^5 + 25^5.

Examples

			15539667 is a term because 15539667 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.