cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A341831 Dirichlet g.f.: 1 / zeta(s)^5.

Original entry on oeis.org

1, -5, -5, 10, -5, 25, -5, -10, 10, 25, -5, -50, -5, 25, 25, 5, -5, -50, -5, -50, 25, 25, -5, 50, 10, 25, -10, -50, -5, -125, -5, -1, 25, 25, 25, 100, -5, 25, 25, 50, -5, -125, -5, -50, -50, 25, -5, -25, 10, -50, 25, -50, -5, 50, 25, 50, 25, 25, -5, 250, -5, 25, -50, 0, 25
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A061200.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[5, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(5, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_5(n/d) * a(d).

A341832 Dirichlet g.f.: 1 / zeta(s)^6.

Original entry on oeis.org

1, -6, -6, 15, -6, 36, -6, -20, 15, 36, -6, -90, -6, 36, 36, 15, -6, -90, -6, -90, 36, 36, -6, 120, 15, 36, -20, -90, -6, -216, -6, -6, 36, 36, 36, 225, -6, 36, 36, 120, -6, -216, -6, -90, -90, 36, -6, -90, 15, -90, 36, -90, -6, 120, 36, 120, 36, 36, -6, 540, -6, 36, -90, 1, 36
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A034695.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[6, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 65}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^6)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(6, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_6(n/d) * a(d).

A341833 Dirichlet g.f.: 1 / zeta(s)^7.

Original entry on oeis.org

1, -7, -7, 21, -7, 49, -7, -35, 21, 49, -7, -147, -7, 49, 49, 35, -7, -147, -7, -147, 49, 49, -7, 245, 21, 49, -35, -147, -7, -343, -7, -21, 49, 49, 49, 441, -7, 49, 49, 245, -7, -343, -7, -147, -147, 49, -7, -245, 21, -147, 49, -147, -7, 245, 49, 245, 49, 49, -7, 1029, -7, 49
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111217.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[7, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 62}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^7)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(7, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_7(n/d) * a(d).

A341834 Dirichlet g.f.: 1 / zeta(s)^8.

Original entry on oeis.org

1, -8, -8, 28, -8, 64, -8, -56, 28, 64, -8, -224, -8, 64, 64, 70, -8, -224, -8, -224, 64, 64, -8, 448, 28, 64, -56, -224, -8, -512, -8, -56, 64, 64, 64, 784, -8, 64, 64, 448, -8, -512, -8, -224, -224, 64, -8, -560, 28, -224, 64, -224, -8, 448, 64, 448, 64, 64, -8, 1792
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111218.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[8, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 60}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^8)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(8, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_8(n/d) * a(d).

A341835 Dirichlet g.f.: 1 / zeta(s)^9.

Original entry on oeis.org

1, -9, -9, 36, -9, 81, -9, -84, 36, 81, -9, -324, -9, 81, 81, 126, -9, -324, -9, -324, 81, 81, -9, 756, 36, 81, -84, -324, -9, -729, -9, -126, 81, 81, 81, 1296, -9, 81, 81, 756, -9, -729, -9, -324, -324, 81, -9, -1134, 36, -324, 81, -324, -9, 756, 81, 756, 81, 81
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111219.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[9, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 58}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^9)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(9, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_9(n/d) * a(d).

A341836 Dirichlet g.f.: 1 / zeta(s)^10.

Original entry on oeis.org

1, -10, -10, 45, -10, 100, -10, -120, 45, 100, -10, -450, -10, 100, 100, 210, -10, -450, -10, -450, 100, 100, -10, 1200, 45, 100, -120, -450, -10, -1000, -10, -252, 100, 100, 100, 2025, -10, 100, 100, 1200, -10, -1000, -10, -450, -450, 100, -10, -2100, 45, -450, 100, -450
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Comments

Dirichlet inverse of A111220.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[10, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 52}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^10)[n], ", ")) \\ Vaclav Kotesovec, Feb 22 2021

Formula

Multiplicative with a(p^e) = (-1)^e * binomial(10, e).
a(1) = 1; a(n) = -Sum_{d|n, d < n} tau_10(n/d) * a(d).

A341837 If n = Product (p_j^k_j) then a(n) = Product ((-1)^k_j * binomial(n, k_j)).

Original entry on oeis.org

1, -2, -3, 6, -5, 36, -7, -56, 36, 100, -11, -792, -13, 196, 225, 1820, -17, -2754, -19, -3800, 441, 484, -23, 48576, 300, 676, -2925, -10584, -29, -27000, -31, -201376, 1089, 1156, 1225, 396900, -37, 1444, 1521, 395200, -41, -74088, -43, -41624, -44550
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((-1)^#[[2]] Binomial[n, #[[2]]] &/@ FactorInteger[n]); Table[a[n], {n, 45}]
  • PARI
    a(n) = my(f=factor(n)[,2]); prod(k=1, #f, (-1)^f[k]*binomial(n, f[k])); \\ Michel Marcus, Feb 21 2021

Formula

a(n) = A346148(n, n). - Sebastian Karlsson, Aug 22 2021
Showing 1-7 of 7 results.