cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003352 Numbers that are the sum of 7 positive 5th powers.

Original entry on oeis.org

7, 38, 69, 100, 131, 162, 193, 224, 249, 280, 311, 342, 373, 404, 435, 491, 522, 553, 584, 615, 646, 733, 764, 795, 826, 857, 975, 1006, 1030, 1037, 1061, 1068, 1092, 1123, 1154, 1185, 1216, 1217, 1248, 1272
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
41940 is in the sequence as 41940 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 7^5.
65614 is in the sequence as 65614 = 1^5 + 3^5 + 3^5 + 6^5 + 6^5 + 7^5 + 8^5.
96845 is in the sequence as 96845 = 1^5 + 2^5 + 4^5 + 5^5 + 7^5 + 7^5 + 9^5. (End)
		

Crossrefs

Extensions

Incorrect program removed by David A. Corneth, Aug 03 2020

A345823 Numbers that are the sum of seven fourth powers in exactly one ways.

Original entry on oeis.org

7, 22, 37, 52, 67, 82, 87, 97, 102, 112, 117, 132, 147, 162, 167, 177, 182, 197, 212, 227, 242, 247, 322, 327, 337, 352, 387, 402, 407, 417, 452, 467, 482, 487, 562, 567, 577, 582, 592, 627, 631, 642, 646, 657, 661, 662, 676, 691, 692, 706, 707, 711, 721, 722
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003341 at term 23 because 262 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.

Examples

			22 is a term because 22 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346279 Numbers that are the sum of seven fifth powers in exactly two ways.

Original entry on oeis.org

4099, 4130, 4161, 4341, 4372, 4583, 5122, 5153, 5364, 6145, 7223, 7254, 7465, 8246, 10347, 11874, 11905, 12116, 12897, 14998, 19649, 20905, 20936, 21147, 21928, 24029, 28680, 36866, 36897, 37108, 37711, 37889, 39990, 40138, 44641, 51393, 51448, 51479, 51510
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345605 at term 156 because 84457 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5.

Examples

			4099 is a term because 4099 = 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346326 Numbers that are the sum of eight fifth powers in exactly one way.

Original entry on oeis.org

8, 39, 70, 101, 132, 163, 194, 225, 250, 256, 281, 312, 343, 374, 405, 436, 467, 492, 523, 554, 585, 616, 647, 678, 734, 765, 796, 827, 858, 889, 976, 1007, 1031, 1038, 1062, 1069, 1093, 1100, 1124, 1155, 1186, 1217, 1218, 1248, 1249, 1273, 1280, 1304, 1311
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003353 at term 156 because 4100 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			8 is a term because 8 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346356 Numbers that are the sum of six fifth powers in exactly one way.

Original entry on oeis.org

6, 37, 68, 99, 130, 161, 192, 248, 279, 310, 341, 372, 403, 490, 521, 552, 583, 614, 732, 763, 794, 825, 974, 1005, 1029, 1036, 1060, 1091, 1122, 1153, 1184, 1216, 1247, 1271, 1302, 1333, 1364, 1395, 1458, 1513, 1544, 1575, 1606, 1755, 1786, 1817, 1997, 2028
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003351 at term 93 because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			6 is a term because 6 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.