cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003353 Numbers that are the sum of 8 positive 5th powers.

Original entry on oeis.org

8, 39, 70, 101, 132, 163, 194, 225, 250, 256, 281, 312, 343, 374, 405, 436, 467, 492, 523, 554, 585, 616, 647, 678, 734, 765, 796, 827, 858, 889, 976, 1007, 1031, 1038, 1062, 1069, 1093, 1100, 1124, 1155, 1186, 1217, 1218, 1248, 1249, 1273, 1280, 1304, 1311, 1335, 1366
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
32373 is in the sequence as 32373 = 1^5 + 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 6^5 + 6^5.
42605 is in the sequence as 42605 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 6^5 + 7^5 + 7^5.
58030 is in the sequence as 58030 = 2^5 + 2^5 + 4^5 + 6^5 + 6^5 + 6^5 + 7^5 + 7^5. (End)
		

Crossrefs

A345833 Numbers that are the sum of eight fourth powers in exactly one ways.

Original entry on oeis.org

8, 23, 38, 53, 68, 83, 88, 98, 103, 113, 118, 128, 133, 148, 163, 168, 178, 183, 193, 198, 213, 228, 243, 248, 258, 328, 338, 353, 368, 403, 408, 418, 433, 468, 483, 488, 498, 568, 578, 593, 608, 632, 643, 647, 648, 658, 662, 663, 673, 677, 692, 707, 708, 712
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003342 at term 26 because 263 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.

Examples

			23 is a term because 23 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346327 Numbers that are the sum of eight fifth powers in exactly two ways.

Original entry on oeis.org

4100, 4131, 4162, 4193, 4342, 4373, 4404, 4584, 4615, 4826, 5123, 5154, 5185, 5365, 5396, 5607, 6146, 6177, 6388, 7169, 7224, 7255, 7286, 7466, 7497, 7708, 8247, 8278, 8489, 9270, 10348, 10379, 10590, 11371, 11875, 11906, 11937, 12117, 12148, 12359, 12898
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345610 at term 128 because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.

Examples

			4100 is a term because 4100 = 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346278 Numbers that are the sum of seven fifth powers in exactly one way.

Original entry on oeis.org

7, 38, 69, 100, 131, 162, 193, 224, 249, 280, 311, 342, 373, 404, 435, 491, 522, 553, 584, 615, 646, 733, 764, 795, 826, 857, 975, 1006, 1030, 1037, 1061, 1068, 1092, 1123, 1154, 1185, 1216, 1217, 1248, 1272, 1279, 1303, 1334, 1365, 1396, 1427, 1459, 1490
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003352 at term 123 because 4099 = 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			7 is a term because 7 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346336 Numbers that are the sum of nine fifth powers in exactly one way.

Original entry on oeis.org

9, 40, 71, 102, 133, 164, 195, 226, 251, 257, 282, 288, 313, 344, 375, 406, 437, 468, 493, 499, 524, 555, 586, 617, 648, 679, 710, 735, 766, 797, 828, 859, 890, 921, 977, 1008, 1032, 1039, 1063, 1070, 1094, 1101, 1125, 1132, 1156, 1187, 1218, 1219, 1249, 1250
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003354 at term 191 because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			9 is a term because 9 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.