cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345845 Numbers that are the sum of nine fourth powers in exactly three ways.

Original entry on oeis.org

519, 534, 599, 774, 1143, 1364, 1539, 1604, 1619, 1814, 2579, 2644, 2659, 2679, 2694, 2709, 2724, 2739, 2754, 2759, 2774, 2789, 2819, 2834, 2839, 2869, 2884, 2899, 2994, 2999, 3079, 3109, 3124, 3139, 3303, 3318, 3333, 3334, 3363, 3364, 3379, 3383, 3398, 3463
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345587 at term 26 because 285.

Examples

			534 is a term because 534 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345620 Numbers that are the sum of nine fifth powers in three or more ways.

Original entry on oeis.org

52418, 52449, 52660, 53441, 54519, 54550, 54761, 55542, 55690, 57643, 60193, 62294, 69224, 69635, 69666, 69877, 70658, 70955, 70986, 71197, 71325, 71978, 72759, 73001, 74079, 76031, 77410, 78730, 84162, 84459, 84490, 84521, 84701, 84732, 84943, 85185, 85482
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			52449 is a term because 52449 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A346328 Numbers that are the sum of eight fifth powers in exactly three ways.

Original entry on oeis.org

52417, 54518, 69634, 70954, 84458, 84489, 84700, 85481, 87582, 92233, 101264, 102890, 112574, 117225, 119326, 134473, 143264, 143442, 143506, 149781, 151448, 158719, 159465, 165634, 166998, 167029, 167196, 167240, 168021, 170122, 174773, 183804, 184457
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345611 at term 105 because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5.

Examples

			52417 is a term because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A346337 Numbers that are the sum of nine fifth powers in exactly two ways.

Original entry on oeis.org

4101, 4132, 4163, 4194, 4225, 4343, 4374, 4405, 4436, 4585, 4616, 4647, 4827, 4858, 5069, 5124, 5155, 5186, 5217, 5366, 5397, 5428, 5608, 5639, 5850, 6147, 6178, 6209, 6389, 6420, 6631, 7170, 7201, 7225, 7256, 7287, 7318, 7412, 7467, 7498, 7529, 7709, 7740
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345619 at term 306 because 52418 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.

Examples

			4101 is a term because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346339 Numbers that are the sum of nine fifth powers in exactly four ways.

Original entry on oeis.org

55542, 120350, 143507, 167241, 182549, 192233, 202890, 326685, 327986, 328247, 329028, 329809, 333257, 351722, 358474, 358968, 359210, 359538, 359813, 365404, 367071, 367313, 374034, 374846, 375627, 376619, 377158, 379259, 381157, 383910, 384765, 390396
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345621 at term 37 because 392063 = 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5.

Examples

			55542 is a term because 55542 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A346348 Numbers that are the sum of ten fifth powers in exactly three ways.

Original entry on oeis.org

8194, 21940, 52419, 52450, 52481, 52661, 52692, 52903, 53442, 53473, 53684, 54465, 54520, 54551, 54582, 54762, 54793, 55004, 55691, 55722, 55933, 56714, 57644, 57675, 57886, 58815, 60194, 60225, 60436, 60768, 61217, 62295, 62326, 62537, 63466, 65419, 67969
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345635 at term 19 because 55543 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.

Examples

			8194 is a term because 8194 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.