cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A065359 Alternating bit sum for n: replace 2^k with (-1)^k in binary expansion of n.

Original entry on oeis.org

0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, -2, -1, -3, -2, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2
Offset: 0

Views

Author

Marc LeBrun, Oct 31 2001

Keywords

Comments

Notation: (2)[n](-1)
From David W. Wilson and Ralf Stephan, Jan 09 2007: (Start)
a(n) is even iff n in A001969; a(n) is odd iff n in A000069.
a(n) == 0 (mod 3) iff n == 0 (mod 3).
a(n) == 0 (mod 6) iff (n == 0 (mod 3) and n/3 not in A036556).
a(n) == 3 (mod 6) iff (n == 0 (mod 3) and n/3 in A036556). (End)
a(n) = A030300(n) - A083905(n). - Ralf Stephan, Jul 12 2003
From Robert G. Wilson v, Feb 15 2011: (Start)
First occurrence of k and -k: 0, 1, 2, 5, 10, 21, 42, 85, ..., (A000975); i.e., first 0 occurs for 0, first 1 occurs for 1, first -1 occurs at 2, first 2 occurs for 5, etc.;
a(n)=-3 only if n mod 3 = 0,
a(n)=-2 only if n mod 3 = 1,
a(n)=-1 only if n mod 3 = 2,
a(n)= 0 only if n mod 3 = 0,
a(n)= 1 only if n mod 3 = 1,
a(n)= 2 only if n mod 3 = 2,
a(n)= 3 only if n mod 3 = 0, ..., . (End)
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 20 2011
In the Koch curve, number the segments starting with n=0 for the first segment. The net direction (i.e., the sum of the preceding turns) of segment n is a(n)*60 degrees. This is since in the curve each base-4 digit 0,1,2,3 of n is a sub-curve directed respectively 0, +60, -60, 0 degrees, which is the net 0,+1,-1,0 of two bits in the sum here. - Kevin Ryde, Jan 24 2020

Examples

			Alternating bit sum for 11 = 1011 in binary is 1 - 1 + 0 - 1 = -1, so a(11) = -1.
		

Crossrefs

Cf. A005536 (partial sums), A056832 (abs first differences), A010060 (mod 2), A039004 (indices of 0's).
Cf. also A004718.
Cf. analogous sequences for bases 3-10: A065368, A346688, A346689, A346690, A346691, A346731, A346732, A055017 and also A373605 (for primorial base).

Programs

  • Haskell
    a065359 0 = 0
    a065359 n = - a065359 n' + m where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Mar 20 2015
    
  • Maple
    A065359 := proc(n) local dgs ; dgs := convert(n,base,2) ; add( -op(i,dgs)*(-1)^i,i=1..nops(dgs)) ; end proc: # R. J. Mathar, Feb 04 2011
  • Mathematica
    f[0]=0; f[n_] := Plus @@ (-(-1)^Range[ Floor[ Log2@ n + 1]] Reverse@ IntegerDigits[n, 2]); Array[ f, 107, 0]
  • PARI
    a(n) = my(s=0, u=1); for(k=0,#binary(n)-1,s+=bittest(n,k)*u;u=-u);s /* Washington Bomfim, Jan 18 2011 */
    
  • PARI
    a(n) = my(b=binary(n)); b*[(-1)^k|k<-[-#b+1..0]]~; \\ Ruud H.G. van Tol, Oct 16 2023
    
  • PARI
    a(n) = if(n==0, 0, 2*hammingweight(bitand(n, ((4<<(2*logint(n,4)))-1)/3)) - hammingweight(n)) \\ Andrew Howroyd, Dec 14 2024
    
  • Python
    def a(n):
        return sum((-1)**k for k, bi in enumerate(bin(n)[2:][::-1]) if bi=='1')
    print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 13 2021
    
  • Python
    from sympy.ntheory import digits
    def A065359(n): return sum((0,1,-1,0)[i] for i in digits(n,4)[1:]) # Chai Wah Wu, Jul 19 2024

Formula

G.f.: (1/(1-x)) * Sum_{k>=0} (-1)^k*x^2^k/(1+x^2^k). - Ralf Stephan, Mar 07 2003
a(0) = 0, a(2n) = -a(n), a(2n+1) = 1-a(n). - Ralf Stephan, Mar 07 2003
a(n) = Sum_{k>=0} A030308(n,k)*(-1)^k. - Philippe Deléham, Oct 20 2011
a(n) = -a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Mar 20 2015
a(n) = A139351(n) - A139352(n). - Kevin Ryde, Jan 24 2020
G.f. A(x) satisfies: A(x) = x / (1 - x^2) - (1 + x) * A(x^2). - Ilya Gutkovskiy, Jul 28 2021
a(n) = A195017(A019565(n)). - Antti Karttunen, Jun 19 2024

Extensions

More terms from Ralf Stephan, Jul 12 2003

A055017 Difference between sums of alternate digits of n starting with the last, i.e., (sum of ultimate digit of n, antepenultimate digit of n, ...) - (sum of penultimate digit of n, preantepenultimate digit of n, ...).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, -8, -7, -6, -5, -4, -3
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

a(n) is a multiple of 11 iff n is divisible by 11.
Digital sum with alternating signs starting with a positive sign for the rightmost digit. - Hieronymus Fischer, Jun 18 2007
For n < 100, a(n) = (n mod 10 - floor(n/10)) = -A076313(n). - Hieronymus Fischer, Jun 18 2007

Examples

			a(123) = 3-2+1 = 2, a(9875) = 5-7+8-9 = -3.
		

Crossrefs

Cf. A225693 (alternating sum of digits).
Unsigned version differs from A040114 and A040115 when n=100 and from A040997 when n=101.
Cf. A004086.
Cf. analogous sequences for bases 2-9: A065359, A065368, A346688, A346689, A346690, A346691, A346731, A346732 and also A373605 (for primorial base).

Programs

  • Maple
    sumodigs := proc(n) local dg; dg := convert(n,base,10) ; add(op(1+2*i,dg), i=0..floor(nops(dg)-1)/2) ; end proc:
    sumedigs := proc(n) local dg; dg := convert(n,base,10) ; add(op(2+2*i,dg), i=0..floor(nops(dg)-2)/2) ; end proc:
    A055017 := proc(n) sumodigs(n)-sumedigs(n) ; end proc: # R. J. Mathar, Aug 26 2011
  • Python
    def A055017(n): return sum((-1 if i % 2 else 1)*int(j) for i, j in enumerate(str(n)[::-1])) # Chai Wah Wu, May 11 2022
  • Smalltalk
    "Recursive version for general bases"
    "Set base = 10 for this sequence"
    altDigitalSumRight: base
    | s |
    base = 1 ifTrue: [^self \\ 2].
    (s := self // base) > 0
      ifTrue: [^(self - (s * base) - (s altDigitalSumRight: base))]
      ifFalse: [^self]
    [by Hieronymus Fischer, Mar 23 2014]
    

Formula

From Hieronymus Fischer, Jun 18 2007, Jun 25 2007, Mar 23 2014: (Start)
a(n) = n + 11*Sum_{k>=1} (-1)^k*floor(n/10^k).
a(10n+k) = k - a(n), 0 <= k < 10.
G.f.: Sum_{k>=1} (x^k-x^(k+10^k)+(-1)^k*11*x^(10^k))/((1-x^(10^k))*(1-x)).
a(n) = n + 11*Sum_{k=10..n} Sum_{j|k,j>=10} (-1)^floor(log_10(j))*(floor(log_10(j)) - floor(log_10(j-1))).
G.f. expressed in terms of Lambert series: g(x) = (x/(1-x)+11*L[b(k)](x))/(1-x) where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = (-1)^floor(log_10(k)) if k>1 is a power of 10, otherwise b(k)=0.
G.f.: (1/(1-x)) * Sum_{k>=1} (1+11*c(k))*x^k, where c(k) = Sum_{j>=2,j|k} (-1)^floor(log_10(j))*(floor(log_10(j))-floor(log_10(j-1))).
Formulas for general bases b > 1 (b = 10 for this sequence).
a(n) = Sum_{k>=0} (-1)^k*(floor(n/b^k) mod b).
a(n) = n + (b+1)*Sum_{k>=1} (-1)^k*floor(n/b^k). Both sums are finite with floor(log_b(n)) as the highest index.
a(n) = a(n mod b^k) + (-1)^k*a(floor(n/b^k)), for all k >= 0.
a(n) = a(n mod b) - a(floor(n/b)).
a(n) = a(n mod b^2) + a(floor(n/b^2)).
a(n) = (-1)^m*A225693(n), where m = floor(log_b(n)).
a(n) = (-1)^k*A225693(A004086(n)), where k = is the number of trailing 0's of n, formally, k = max(j | n == 0 (mod 10^j)).
a(A004086(A004086(n))) = (-1)^k*a(n), where k = is the number of trailing 0's in the decimal representation of n. (End)

A346690 Replace 6^k with (-1)^k in base-6 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, -1, 0, 1, 2, 3, 4, -2, -1, 0, 1, 2, 3, -3, -2, -1, 0, 1, 2, -4, -3, -2, -1, 0, 1, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, -1, 0, 1, 2, 3, 4, -2, -1, 0, 1, 2, 3, -3, -2, -1, 0, 1, 2, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, -1, 0, 1, 2, 3, 4, -2, -1, 0, 1, 2, 3, -3, -2, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Comments

If n has base-6 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...

Examples

			59 = 135_6, 5 - 3 + 1 = 3, so a(59) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; (n mod 6) - procname(floor(n/6)) end proc:
    f(0):= 0:
    map(f, [$1..100]); # Robert Israel, Nov 21 2022
  • Mathematica
    nmax = 104; A[] = 0; Do[A[x] = x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4)/(1 - x^6) - (1 + x + x^2 + x^3 + x^4 + x^5) A[x^6] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[n + 7 Sum[(-1)^k Floor[n/6^k], {k, 1, Floor[Log[6, n]]}], {n, 0, 104}]
  • PARI
    a(n) = subst(Pol(digits(n, 6)), 'x, -1); \\ Michel Marcus, Nov 22 2022
  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 6)[1:][::-1]))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 29 2021
    

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4) / (1 - x^6) - (1 + x + x^2 + x^3 + x^4 + x^5) * A(x^6).
a(n) = n + 7 * Sum_{k>=1} (-1)^k * floor(n/6^k).
a(6*n+j) = j - a(n) for 0 <= j <= 5. - Robert Israel, Nov 21 2022

A373605 Sum of the even-indexed digits minus the sum of the odd-indexed digits in the primorial base representation (A049345) of n.

Original entry on oeis.org

0, 1, -1, 0, -2, -1, 1, 2, 0, 1, -1, 0, 2, 3, 1, 2, 0, 1, 3, 4, 2, 3, 1, 2, 4, 5, 3, 4, 2, 3, -1, 0, -2, -1, -3, -2, 0, 1, -1, 0, -2, -1, 1, 2, 0, 1, -1, 0, 2, 3, 1, 2, 0, 1, 3, 4, 2, 3, 1, 2, -2, -1, -3, -2, -4, -3, -1, 0, -2, -1, -3, -2, 0, 1, -1, 0, -2, -1, 1, 2, 0, 1, -1, 0, 2, 3, 1, 2, 0, 1, -3, -2, -4, -3, -5, -4, -2, -1, -3
Offset: 0

Views

Author

Antti Karttunen, Jun 18 2024

Keywords

Comments

Alternating digit sum in primorial base, starting with a positive sign for the rightmost (least significant) digit.

Examples

			A049345(85) = 2401, thus the sum of digits at even positions (with the rightmost digit having index 0) is 1+4 = 5, and at the odd positions 0+2 = 2, therefore a(85) = 5-2 = 3.
		

Crossrefs

Cf. A049345, A195017, A276086, A373606, A373607, A373830, A373831 (indices of multiples of 3).
Analogous sequences for bases 2-10: A065359, A065368, A346688, A346689, A346690, A346691, A346731, A346732, A055017.

Programs

  • PARI
    A373605(n) = { my(p=2, i=1, s=0); while(n, s += i*(n%p); n = n\p; p = nextprime(1+p); i = -i); (s); };

Formula

a(n) = A373606(n) - A373607(n).
a(n) = A195017(A276086(n)).

A346689 Replace 5^k with (-1)^k in base-5 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Comments

If n has base-5 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...

Examples

			48 = 143_5, 3 - 4 + 1 = 0, so a(48) = 0.
		

Crossrefs

Programs

  • Mathematica
    nmax = 104; A[] = 0; Do[A[x] = x (1 + 2 x + 3 x^2 + 4 x^3)/(1 - x^5) - (1 + x + x^2 + x^3 + x^4) A[x^5] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[n + 6 Sum[(-1)^k Floor[n/5^k], {k, 1, Floor[Log[5, n]]}], {n, 0, 104}]
  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 5)[1:][::-1]))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3) / (1 - x^5) - (1 + x + x^2 + x^3 + x^4) * A(x^5).
a(n) = n + 6 * Sum_{k>=1} (-1)^k * floor(n/5^k).

A346691 Replace 7^k with (-1)^k in base-7 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, -1, 0, 1, 2, 3, 4, 5, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, -5, -4, -3, -2, -1, 0, 1, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, -1, 0, 1, 2, 3, 4, 5, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 29 2021

Keywords

Comments

If n has base-7 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...

Examples

			83 = 146_7, 6 - 4 + 1 = 3, so a(83) = 3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 104; A[] = 0; Do[A[x] = x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5)/(1 - x^7) - (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) A[x^7] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[n + 8 Sum[(-1)^k Floor[n/7^k], {k, 1, Floor[Log[7, n]]}], {n, 0, 104}]
  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 7)[1:][::-1]))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 29 2021

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5) / (1 - x^7) - (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) * A(x^7).
a(n) = n + 8 * Sum_{k>=1} (-1)^k * floor(n/7^k).

A346731 Replace 8^k with (-1)^k in base-8 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, -1, 0, 1, 2, 3, 4, 5, 6, -2, -1, 0, 1, 2, 3, 4, 5, -3, -2, -1, 0, 1, 2, 3, 4, -4, -3, -2, -1, 0, 1, 2, 3, -5, -4, -3, -2, -1, 0, 1, 2, -6, -5, -4, -3, -2, -1, 0, 1, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, -1, 0, 1, 2, 3, 4, 5, 6, -2, -1, 0, 1, 2, 3, 4, 5, -3, -2, -1, 0, 1, 2, 3, 4, -4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 30 2021

Keywords

Comments

If n has base-8 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...

Examples

			79 = 117_8, 7 - 1 + 1 = 7, so a(79) = 7.
		

Crossrefs

Programs

  • Mathematica
    nmax = 104; A[] = 0; Do[A[x] = x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6)/(1 - x^8) - (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7) A[x^8] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[n + 9 Sum[(-1)^k Floor[n/8^k], {k, 1, Floor[Log[8, n]]}], {n, 0, 104}]
  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 8)[1:][::-1]))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 31 2021

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6) / (1 - x^8) - (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7) * A(x^8).
a(n) = n + 9 * Sum_{k>=1} (-1)^k * floor(n/8^k).

A346732 Replace 9^k with (-1)^k in base-9 expansion of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, -1, 0, 1, 2, 3, 4, 5, 6, 7, -2, -1, 0, 1, 2, 3, 4, 5, 6, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, -6, -5, -4, -3, -2, -1, 0, 1, 2, -7, -6, -5, -4, -3, -2, -1, 0, 1, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, 0, 1, 2, 3, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 30 2021

Keywords

Comments

If n has base-9 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ...

Examples

			89 = 108_9, 8 - 0 + 1 = 9, so a(89) = 9.
		

Crossrefs

Programs

  • Mathematica
    nmax = 104; A[] = 0; Do[A[x] = x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7)/(1 - x^9) - (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8) A[x^9] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[n + 10 Sum[(-1)^k Floor[n/9^k], {k, 1, Floor[Log[9, n]]}], {n, 0, 104}]
  • Python
    from sympy.ntheory.digits import digits
    def a(n):
        return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 9)[1:][::-1]))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jul 31 2021

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7) / (1 - x^9) - (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8) * A(x^9).
a(n) = n + 10 * Sum_{k>=1} (-1)^k * floor(n/9^k).
Showing 1-8 of 8 results.